Genetic modification of H2AX renders mesenchymal stromal cell–derived dopamine neurons more resistant to DNA damage and subsequent apoptosis

Peizhou Jiang, Peng Huang, Shu Hui Yen, Abba Zubair, Dennis W Dickson

Research output: Contribution to journalArticle

3 Scopus citations


Background aims Aberrant production of reactive oxygen species (ROS) and its impact on the integrity of genomic DNA have been considered one of the major risk factors for the loss of dopaminergic neurons in Parkinson's disease (PD). Stem cell transplantation as a strategy to replenish new functional neurons has great potential for PD treatment. However, limited survival of stem cells post-transplantation has always been an obstacle ascribed to the existence of neurotoxic environment in PD patients. Methods To improve the survival of transplanted stem cells for PD treatment, we explored a new strategy based on the function of the H2AX gene (H2A histone family, member X) in determination of DNA repair and cell apoptosis. We introduced a mutant form Y142F of H2AX into dopamine (DA) neuron-like cells differentiated from bone marrow–derived mesenchymal stromal cells (BMSCs). Results Expression of H2AX(Y142F) renders DA neuron-like cells more resistant to DNA damage and subsequent cell death induced by ultraviolet irradiation and 1-methyl-4-phenylpyridinium (MPP+) treatment. Discussion This is a meaningful attempt to improve the sustainability of BMSC-derived dopamine neurons under a brain neurotoxic environment. Further studies are needed to evaluate the implications of our findings in stem cell therapy for PD and related diseases.

Original languageEnglish (US)
Pages (from-to)1483-1492
Number of pages10
Issue number12
StatePublished - Dec 1 2016



  • DNA damage
  • H2AX
  • lentivirus infection
  • mesenchymal stromal cells
  • Parkinson's disease

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Genetics(clinical)
  • Cell Biology
  • Cancer Research
  • Transplantation

Cite this