Generating binary tags for fast medical image retrieval based on convolutional nets and Radon Transform

Xinran Liu, H. R. Tizhoosh, J. Kofman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Content-based image retrieval (CBIR) in large medical image archives is a challenging and necessary task. Generally, different feature extraction methods are used to assign expressive and invariant features to each image such that the search for similar images comes down to feature classification and/or matching. The present work introduces a new image retrieval method for medical applications that employs a convolutional neural network (CNN) with recently introduced Radon barcodes. We combine neural codes for global classification with Radon barcodes for the final retrieval. We also examine image search based on regions of interest (ROI) matching after image retrieval. The IRMA dataset with more than 14,000 x-rays images is used to evaluate the performance of our method. Experimental results show that our approach is superior to many published works.

Original languageEnglish (US)
Title of host publication2016 International Joint Conference on Neural Networks, IJCNN 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2872-2878
Number of pages7
ISBN (Electronic)9781509006199
DOIs
StatePublished - Oct 31 2016
Event2016 International Joint Conference on Neural Networks, IJCNN 2016 - Vancouver, Canada
Duration: Jul 24 2016Jul 29 2016

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2016-October

Conference

Conference2016 International Joint Conference on Neural Networks, IJCNN 2016
Country/TerritoryCanada
CityVancouver
Period7/24/167/29/16

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Generating binary tags for fast medical image retrieval based on convolutional nets and Radon Transform'. Together they form a unique fingerprint.

Cite this