Gallium nitrate accelerates partial thickness wound repair and alters keratinocyte integrin expression to favor a motile phenotype

John Goncalves, Nabil Wasif, Darren Esposito, Jonathan M. Coico, Brian Schwartz, Paul J. Higgins, Richard S. Bockman, Lisa Staiano-Coico

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The nitrate form of the Group III transitional element gallium (GN) increases expression of specific structural components of the provisional wound matrix (i.e., collagen type I, fibronectin) in human dermal fibroblasts. To evaluate the potential of GN as a therapeutic option in management of cutaneous trauma, GN-treated partial thickness porcine wounds and experimentally "injured" human keratinocyte (NHK) monolayer cultures were compared with mirror image control (i.e., saline-treated) sites. GN suppressed cell proliferation in both models, as determined by reduced Ki-67 reactivity and significant lengthening of keratinocyte cell cycle transit times, while effectively promoting reepithelialization. The primary effect of GN was apparently to promote cell migration, as neither epidermal thickness nor epidermal differentiation was altered as a result of GN exposure in vivo or in vitro. Significantly enhanced epidermal reepithelialization was associated with alterations in expression of several keratinocyte integrin subunits. GN induced a significant increase in α5 expression. α5β1 switching is a characteristic of the motile phenotype in the setting of cutaneous injury. Concomitantly, GN treatment also induced a dramatic (70%) decrease in the expression of the α3 subunit; α3β1 binds laminin 5 and is associated with hemidesmosome formation and reestablishment of a nonmotile phenotype. Taken together, the GN-induced changes in integrin expression favor acellular migration. While the molecular mechanism of GN action on resident cells of the skin remains to be defined, these data suggest that GN administration which represses MMP activity in the wound and increases matrix synthesis also accelerates NHK motility and, thereby, may be a useful therapeutic agent for wound repair.

Original languageEnglish (US)
Pages (from-to)134-140
Number of pages7
JournalJournal of Surgical Research
Volume103
Issue number2
DOIs
StatePublished - Jan 1 2002

ASJC Scopus subject areas

  • Surgery

Fingerprint Dive into the research topics of 'Gallium nitrate accelerates partial thickness wound repair and alters keratinocyte integrin expression to favor a motile phenotype'. Together they form a unique fingerprint.

Cite this