Gαi2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions

Kimberly N. Kremer, Ashok Kumar, Karen Elaine Hedin

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1-stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1-dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gai2, and ZAP-70. Moreover, SDF-1-mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.

Original languageEnglish (US)
Pages (from-to)3177-3185
Number of pages9
JournalJournal of Immunology
Volume187
Issue number6
DOIs
StatePublished - Sep 15 2011

Fingerprint

T-Lymphocytes
Membranes
G-Protein-Coupled Receptors
ras Guanine Nucleotide Exchange Factors
ZAP-70 Protein-Tyrosine Kinase
MAP Kinase Signaling System
Diglycerides
Autoimmunity
Chemokines
Cell Movement
Cell Membrane

ASJC Scopus subject areas

  • Immunology

Cite this

Gαi2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions. / Kremer, Kimberly N.; Kumar, Ashok; Hedin, Karen Elaine.

In: Journal of Immunology, Vol. 187, No. 6, 15.09.2011, p. 3177-3185.

Research output: Contribution to journalArticle

@article{96530d326cb94713a6e1facac707eed2,
title = "Gαi2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions",
abstract = "RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1-stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1-dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gai2, and ZAP-70. Moreover, SDF-1-mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.",
author = "Kremer, {Kimberly N.} and Ashok Kumar and Hedin, {Karen Elaine}",
year = "2011",
month = "9",
day = "15",
doi = "10.4049/jimmunol.1100206",
language = "English (US)",
volume = "187",
pages = "3177--3185",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "6",

}

TY - JOUR

T1 - Gαi2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions

AU - Kremer, Kimberly N.

AU - Kumar, Ashok

AU - Hedin, Karen Elaine

PY - 2011/9/15

Y1 - 2011/9/15

N2 - RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1-stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1-dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gai2, and ZAP-70. Moreover, SDF-1-mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.

AB - RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1-stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1-dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gai2, and ZAP-70. Moreover, SDF-1-mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.

UR - http://www.scopus.com/inward/record.url?scp=80053085853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053085853&partnerID=8YFLogxK

U2 - 10.4049/jimmunol.1100206

DO - 10.4049/jimmunol.1100206

M3 - Article

VL - 187

SP - 3177

EP - 3185

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 6

ER -