TY - GEN
T1 - Frequent Causal Pattern Mining
T2 - 2019 IEEE International Conference on Big Data, Big Data 2019
AU - Yadav, Pranjul
AU - Steinbach, Michael
AU - Castro, M. Regina
AU - Caraballo, Pedro J.
AU - Kumar, Vipin
AU - Simon, Gyorgy
N1 - Funding Information:
This study is supported by National Science Foundation (NSF) grant: IIS-1602394 and National Institute of Health (NIH) grant: LM011972. Contents of this document are the sole responsibility of the authors and do not necessarily represent official views of the NSF.
Publisher Copyright:
© 2019 IEEE.
PY - 2019/12
Y1 - 2019/12
N2 - Our aging population increasingly suffers from multiple chronic diseases simultaneously, necessitating the comprehensive treatment of these conditions. Finding the optimal set of drugs for a combinatorial set of diseases is a combinatorial pattern exploration problem. Association rule mining is a popular tool for such problems, but the requirement of health care for finding causal, rather than associative, patterns renders association rule mining unsuitable. To address this issue, we propose a novel framework based on the Rubin-Neyman causal model for extracting causal rules from observational data, correcting for a number of common biases. Specifically, given a set of interventions and a set of items that define subpopulations (e.g., diseases), we wish to find all subpopulations in which effective intervention combinations exist and in each such subpopulation, we wish to find all intervention combinations such that dropping any intervention from this combination will reduce the efficacy of the treatment. A key aspect of our framework is the concept of closed intervention sets which extend the concept of quantifying the effect of a single intervention to a set of concurrent interventions. Closed intervention sets also allow for a pruning strategy that is strictly more efficient than the traditional pruning strategy used by the Apriori algorithm. To implement our ideas, we introduce and compare five methods of estimating causal effect from observational data and rigorously evaluate them on synthetic data to mathematically prove (when possible) why they work. We also evaluated our causal rule mining framework on the Electronic Health Records (EHR) data of a large cohort of 152000 patients from Mayo Clinic and showed that the patterns we extracted are sufficiently rich to explain the controversial findings in the medical literature regarding the effect of a class of cholesterol drugs on Type-II Diabetes Mellitus (T2DM).
AB - Our aging population increasingly suffers from multiple chronic diseases simultaneously, necessitating the comprehensive treatment of these conditions. Finding the optimal set of drugs for a combinatorial set of diseases is a combinatorial pattern exploration problem. Association rule mining is a popular tool for such problems, but the requirement of health care for finding causal, rather than associative, patterns renders association rule mining unsuitable. To address this issue, we propose a novel framework based on the Rubin-Neyman causal model for extracting causal rules from observational data, correcting for a number of common biases. Specifically, given a set of interventions and a set of items that define subpopulations (e.g., diseases), we wish to find all subpopulations in which effective intervention combinations exist and in each such subpopulation, we wish to find all intervention combinations such that dropping any intervention from this combination will reduce the efficacy of the treatment. A key aspect of our framework is the concept of closed intervention sets which extend the concept of quantifying the effect of a single intervention to a set of concurrent interventions. Closed intervention sets also allow for a pruning strategy that is strictly more efficient than the traditional pruning strategy used by the Apriori algorithm. To implement our ideas, we introduce and compare five methods of estimating causal effect from observational data and rigorously evaluate them on synthetic data to mathematically prove (when possible) why they work. We also evaluated our causal rule mining framework on the Electronic Health Records (EHR) data of a large cohort of 152000 patients from Mayo Clinic and showed that the patterns we extracted are sufficiently rich to explain the controversial findings in the medical literature regarding the effect of a class of cholesterol drugs on Type-II Diabetes Mellitus (T2DM).
UR - http://www.scopus.com/inward/record.url?scp=85081302747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081302747&partnerID=8YFLogxK
U2 - 10.1109/BigData47090.2019.9005977
DO - 10.1109/BigData47090.2019.9005977
M3 - Conference contribution
AN - SCOPUS:85081302747
T3 - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
SP - 1981
EP - 1990
BT - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
A2 - Baru, Chaitanya
A2 - Huan, Jun
A2 - Khan, Latifur
A2 - Hu, Xiaohua Tony
A2 - Ak, Ronay
A2 - Tian, Yuanyuan
A2 - Barga, Roger
A2 - Zaniolo, Carlo
A2 - Lee, Kisung
A2 - Ye, Yanfang Fanny
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 9 December 2019 through 12 December 2019
ER -