Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel

Fanchao Meng, Yating Sun, Robert J. Lee, Guiyuan Wang, Xiaolong Zheng, Huan Zhang, Yige Fu, Guojun Yan, Yifan Wang, Weiye Deng, Emily Parks, Betty Y.S. Kim, Zhaogang Yang, Wen Jiang, Lesheng Teng

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Microfluidic technology (MF) has improved the formulation of nanoparticles (NPs) by achieving uniform particle size distribution, controllable particle size, and consistency. Moreover, because liquid mixing can be precisely controlled in the pores of the microfluidic chip, maintaining high mixing efficiency, MF exerts higher of NP encapsulation efficiency (EE) than conventional methods. MF-NPs-cabazitaxel (CTX) particles (MF-NPs-CTX) were first prepared by encapsulating CTX according to MF. Folate (FA)- Polyethylene glycol (PEG)-NPs-CTX particles (FA-PEG-NPs-CTX) were formulated by connecting FA to MF-NPs-CTX to endow NPs with targeted delivery capability. Accordingly, the mean particle size of FA-PEG-NPs-CTX increased by approximately 25 nm, as compared with MF-NPs-CTX. Upon morphological observation of FA-PEG-NPs-CTX and MF-NPs-CTX by transmission electron microscopy (TEM), all NPs were spherical and particle size distribution was uniform. Moreover, the increased delivery efficiency of CTX in vitro and its strong tumor inhibition in vivo indicated that FA-PEG-NPs-CTX had a powerful tumor-suppressive effect both in vitro and in vivo. In vivo imaging and pharmacokinetic data confirmed that FA-PEG-NPs-CTX had good drug delivery efficiency. Taken together, FA-PEG-NPs-CTX particles prepared using MF showed high efficient and targeted drug delivery and may have a considerable driving effect on the clinical application of targeting albumin NPs.

Original languageEnglish (US)
Article number1571
JournalCancers
Volume11
Issue number10
DOIs
StatePublished - Oct 2019

Keywords

  • Albumin nanoparticle
  • Cabazitaxel
  • Folate receptor
  • Microfluidic

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel'. Together they form a unique fingerprint.

Cite this