Flurofamide Prevention and Treatment of Ureaplasma-Induced Hyperammonemia

Derek Fleming, Robin Patel

Research output: Contribution to journalArticlepeer-review

Abstract

Hyperammonemia (HA) syndrome caused by respiratory infection with ammonia (NH3)-producing Ureaplasma species occurs in 4% of lung transplant recipients (LTRs) and is associated with high mortality. Although Ureaplasma-targeted antibiotic intervention is effective, the threat of antibiotic resistance development and pre-existing resistance make an alternative to antibiotics desirable. Considering that the underlying pathology of Ureaplasma-induced hyperammonemia (UIHA) is dependent upon ureaplasmal urease converting urea to NH3, urease inhibition could represent a targeted treatment approach. Here, the ability of the urease inhibitor, flurofamide, to prevent and treat UIHA was investigated. To confirm that flurofamide is broadly active against Ureaplasma respiratory isolates, the minimum urease inhibitory concentration against 4 isolates of Ureaplasma parvum and 5 isolates of Ureaplasma urealyticum was first determined in vitro. NH3 production by all isolates was inhibited by #2 mM flurofamide. To test the ability of flurofamide to prevent and treat UIHA, a mouse model of Ureaplasma respiratory infection was utilized. When animals were administered 6 mg/kg flurofamide via intraperitoneal injection 1 h prior to infection with U. parvum, flurofamide-administered animals exhibited significantly lower blood NH3 levels than did non-prophylaxed animals (10.9 6 4.0 mmol/L compared to 26.5 6 17.7 mmol/L; P = 0.0146) 24 h post-treatment. When U. parvum-infected hyperammonemic mice were treated with 6 mg/kg flurofamide, treated animals had significantly greater decreases in blood-NH3 levels 6 h post-treatment than did untreated mice (56.4 6 17.1% compared to 9.1 6 33.5% reduction; P = 0.0152). Together, these results indicate that flurofamide is a promising non-antibiotic treatment for UIHA in LTRs. IMPORTANCE Ureaplasma-associated hyperammonemia syndrome occurs in 4% of lung transplant recipients and has historically been almost universally fatal. While Ureaplasma-targeted antibiotics have been shown to be protective, the possibility of underlying resistance and resistance selection render non-antibiotic interventions an interesting approach.

Original languageEnglish (US)
JournalMicrobiology Spectrum
Volume10
Issue number5
DOIs
StatePublished - Sep 2022

Keywords

  • Ureaplasma
  • hyperammonemia
  • lung transplantation

ASJC Scopus subject areas

  • Physiology
  • Ecology
  • General Immunology and Microbiology
  • Genetics
  • Microbiology (medical)
  • Cell Biology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Flurofamide Prevention and Treatment of Ureaplasma-Induced Hyperammonemia'. Together they form a unique fingerprint.

Cite this