Fibronectin metabolism by human mesangial cells: Effects of collagens

Fernando G Cosio

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In the present study we assessed whether the fibronectin (FN) metabolism of human mesangial cells (HMC) in culture is influenced by the contact of HMC with collagens type I and IV. HMC were grown on collagen gels or on collagen- coated surfaces (collagen films). FN concentrations were measured by enzyme- linked immunosorbent assay; FN synthesis was measured by metabolic labeling and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, the structure of matrix FN was examined by immunofluorescence microscopy. Compared with cells grown on plastic, HMC on collagen gels or collagen films accumulated greater amounts of FN in the cell matrix, and in these cultures, matrix FN was organized into a complex mesh of fibers. FN fiber formation was more prominent in cells adherent to collagen IV than in cells adherent to collagen I, and these fibers were observed as early as day 1 in culture. HMC adherent to plastic deposited matrix FN as patches and only occasionally as FN fibers localized to the periphery of the cell. The accumulation of FN in the matrix of HMC on collagen was not due to an increased rate of FN synthesis. In fact, HMC on collagen gels synthesized less FN than HMC on plastic. The present results indicate that the accumulation of FN in the matrix of HMC on collagen is due to the fact that this FN is less likely to be released into the supernatant than the matrix FN produced by HMC on plastic. The decreased FN synthesis demonstrated by HMC on collagen gels was associated with an overall decrease in protein synthesis but was not associated with a decrease in FN mRNA levels. Finally, FN isolated from HMC on collagen gels contained a unique 90-kDa gelatin-binding FN fragment. In conclusion, collagens have effects on the synthesis, localization, organization, and catabolism of FN produced by HMC in culture. In particular, collagen IV, the collagen normally present in the glomerular mesangium, appears to influence uniquely the organization of mesangial matrix FN.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Fluid and Electrolyte Physiology
Volume264
Issue number1 33-1
StatePublished - 1993
Externally publishedYes

Fingerprint

Mesangial Cells
Fibronectins
Collagen
Gels
Plastics
Cell Culture Techniques
Glomerular Mesangium

Keywords

  • collagens I and IV
  • matrix
  • mesangium

ASJC Scopus subject areas

  • Physiology

Cite this

Fibronectin metabolism by human mesangial cells : Effects of collagens. / Cosio, Fernando G.

In: American Journal of Physiology - Renal Fluid and Electrolyte Physiology, Vol. 264, No. 1 33-1, 1993.

Research output: Contribution to journalArticle

@article{6fd8fe144a814fa786b19fda496c26bd,
title = "Fibronectin metabolism by human mesangial cells: Effects of collagens",
abstract = "In the present study we assessed whether the fibronectin (FN) metabolism of human mesangial cells (HMC) in culture is influenced by the contact of HMC with collagens type I and IV. HMC were grown on collagen gels or on collagen- coated surfaces (collagen films). FN concentrations were measured by enzyme- linked immunosorbent assay; FN synthesis was measured by metabolic labeling and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, the structure of matrix FN was examined by immunofluorescence microscopy. Compared with cells grown on plastic, HMC on collagen gels or collagen films accumulated greater amounts of FN in the cell matrix, and in these cultures, matrix FN was organized into a complex mesh of fibers. FN fiber formation was more prominent in cells adherent to collagen IV than in cells adherent to collagen I, and these fibers were observed as early as day 1 in culture. HMC adherent to plastic deposited matrix FN as patches and only occasionally as FN fibers localized to the periphery of the cell. The accumulation of FN in the matrix of HMC on collagen was not due to an increased rate of FN synthesis. In fact, HMC on collagen gels synthesized less FN than HMC on plastic. The present results indicate that the accumulation of FN in the matrix of HMC on collagen is due to the fact that this FN is less likely to be released into the supernatant than the matrix FN produced by HMC on plastic. The decreased FN synthesis demonstrated by HMC on collagen gels was associated with an overall decrease in protein synthesis but was not associated with a decrease in FN mRNA levels. Finally, FN isolated from HMC on collagen gels contained a unique 90-kDa gelatin-binding FN fragment. In conclusion, collagens have effects on the synthesis, localization, organization, and catabolism of FN produced by HMC in culture. In particular, collagen IV, the collagen normally present in the glomerular mesangium, appears to influence uniquely the organization of mesangial matrix FN.",
keywords = "collagens I and IV, matrix, mesangium",
author = "Cosio, {Fernando G}",
year = "1993",
language = "English (US)",
volume = "264",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1 33-1",

}

TY - JOUR

T1 - Fibronectin metabolism by human mesangial cells

T2 - Effects of collagens

AU - Cosio, Fernando G

PY - 1993

Y1 - 1993

N2 - In the present study we assessed whether the fibronectin (FN) metabolism of human mesangial cells (HMC) in culture is influenced by the contact of HMC with collagens type I and IV. HMC were grown on collagen gels or on collagen- coated surfaces (collagen films). FN concentrations were measured by enzyme- linked immunosorbent assay; FN synthesis was measured by metabolic labeling and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, the structure of matrix FN was examined by immunofluorescence microscopy. Compared with cells grown on plastic, HMC on collagen gels or collagen films accumulated greater amounts of FN in the cell matrix, and in these cultures, matrix FN was organized into a complex mesh of fibers. FN fiber formation was more prominent in cells adherent to collagen IV than in cells adherent to collagen I, and these fibers were observed as early as day 1 in culture. HMC adherent to plastic deposited matrix FN as patches and only occasionally as FN fibers localized to the periphery of the cell. The accumulation of FN in the matrix of HMC on collagen was not due to an increased rate of FN synthesis. In fact, HMC on collagen gels synthesized less FN than HMC on plastic. The present results indicate that the accumulation of FN in the matrix of HMC on collagen is due to the fact that this FN is less likely to be released into the supernatant than the matrix FN produced by HMC on plastic. The decreased FN synthesis demonstrated by HMC on collagen gels was associated with an overall decrease in protein synthesis but was not associated with a decrease in FN mRNA levels. Finally, FN isolated from HMC on collagen gels contained a unique 90-kDa gelatin-binding FN fragment. In conclusion, collagens have effects on the synthesis, localization, organization, and catabolism of FN produced by HMC in culture. In particular, collagen IV, the collagen normally present in the glomerular mesangium, appears to influence uniquely the organization of mesangial matrix FN.

AB - In the present study we assessed whether the fibronectin (FN) metabolism of human mesangial cells (HMC) in culture is influenced by the contact of HMC with collagens type I and IV. HMC were grown on collagen gels or on collagen- coated surfaces (collagen films). FN concentrations were measured by enzyme- linked immunosorbent assay; FN synthesis was measured by metabolic labeling and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, the structure of matrix FN was examined by immunofluorescence microscopy. Compared with cells grown on plastic, HMC on collagen gels or collagen films accumulated greater amounts of FN in the cell matrix, and in these cultures, matrix FN was organized into a complex mesh of fibers. FN fiber formation was more prominent in cells adherent to collagen IV than in cells adherent to collagen I, and these fibers were observed as early as day 1 in culture. HMC adherent to plastic deposited matrix FN as patches and only occasionally as FN fibers localized to the periphery of the cell. The accumulation of FN in the matrix of HMC on collagen was not due to an increased rate of FN synthesis. In fact, HMC on collagen gels synthesized less FN than HMC on plastic. The present results indicate that the accumulation of FN in the matrix of HMC on collagen is due to the fact that this FN is less likely to be released into the supernatant than the matrix FN produced by HMC on plastic. The decreased FN synthesis demonstrated by HMC on collagen gels was associated with an overall decrease in protein synthesis but was not associated with a decrease in FN mRNA levels. Finally, FN isolated from HMC on collagen gels contained a unique 90-kDa gelatin-binding FN fragment. In conclusion, collagens have effects on the synthesis, localization, organization, and catabolism of FN produced by HMC in culture. In particular, collagen IV, the collagen normally present in the glomerular mesangium, appears to influence uniquely the organization of mesangial matrix FN.

KW - collagens I and IV

KW - matrix

KW - mesangium

UR - http://www.scopus.com/inward/record.url?scp=0027500715&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027500715&partnerID=8YFLogxK

M3 - Article

C2 - 8430822

AN - SCOPUS:0027500715

VL - 264

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1 33-1

ER -