Feasibility of Applying Fourier Transform Electrochemical Impedance Spectroscopy in Fast Cyclic Square Wave Voltammetry for theIn VivoMeasurement of Neurotransmitters

Cheonho Park, Sangmun Hwang, Yumin Kang, Jeongeun Sim, Hyun U. Cho, Yoonbae Oh, Hojin Shin, Do Hyoung Kim, Charles D. Blaha, Kevin E. Bennet, Kendall H. Lee, Dong Pyo Jang

Research output: Contribution to journalArticlepeer-review

Abstract

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in thein vivodetection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, allRct,Rs, andCdlvoltammograms showed different DA redox patterns and linear trends for the DA concentration (R2> 0.99). Furthermore, theRctvoltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally,Cdlfrom FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r= 0.986) andin vivoexperiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.

Original languageEnglish (US)
Pages (from-to)15861-15869
Number of pages9
JournalAnalytical Chemistry
Volume93
Issue number48
DOIs
StatePublished - Dec 7 2021

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Feasibility of Applying Fourier Transform Electrochemical Impedance Spectroscopy in Fast Cyclic Square Wave Voltammetry for theIn VivoMeasurement of Neurotransmitters'. Together they form a unique fingerprint.

Cite this