TY - JOUR
T1 - Expression of a novel isoform of Na+/H+ exchanger 3 in the kidney and intestine of banded houndshark, Triakis scyllium
AU - Li, Shanshan
AU - Kato, Akira
AU - Takabe, Souichirou
AU - Chen, An Ping
AU - Romero, Michael F.
AU - Umezawa, Takahiro
AU - Nakada, Tsutomu
AU - Hyodo, Susumu
AU - Hirose, Shigehisa
PY - 2013
Y1 - 2013
N2 - Na+/H+ exchanger 3 (NHE3) provides one of the major Na+ absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na+ reabsorption, urine acidification, and intestinal Na+ absorption in elasmobranchs.
AB - Na+/H+ exchanger 3 (NHE3) provides one of the major Na+ absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na+ reabsorption, urine acidification, and intestinal Na+ absorption in elasmobranchs.
KW - Epithelial transport
KW - Intestine
KW - Kidney
KW - Nhe3
KW - Shark
UR - http://www.scopus.com/inward/record.url?scp=84878628144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878628144&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00417.2012
DO - 10.1152/ajpregu.00417.2012
M3 - Article
C2 - 23485868
AN - SCOPUS:84878628144
SN - 0363-6119
VL - 304
SP - R865-R876
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 10
ER -