Exercise cardiac output is maintained with advancing age in healthy human subjects

Cardiac dilatation and increased stroke volume compensate for a diminished heart rate

R. J. Rodeheffer, G. Gerstenblith, L. C. Becker, J. L. Fleg, M. L. Weisfeldt, E. G. Lakatta

Research output: Contribution to journalArticle

454 Citations (Scopus)

Abstract

To assess the effect of age on cardiac volumes and function in the absence of overt or occult coronary disease, we performed serial gated blood pool scans at rest and during progressive upright bicycle exercise to exhaustion in 61 participants in the Baltimore Longitudinal Study of Aging. The subjects ranged in age from 25 to 79 years and were free of cardiac disease according to their histories and results of physical, resting and stress electrocardiographic, and stress thallium scintigraphic examinations. Absolute left ventricular volumes were obtained at each workload. There were no age-related changes in cardiac output, end-diastolic or end-systolic volumes, or ejection fraction at rest. During vigorous exercise (125 W), cardiac output was not related to age (cardiac output [1/min] = 16.02 + 0.03 [age]; r = .12, p = .46). However, there was an age-related increase in end-diastolic volume (end-diastolic volume [ml] = 86.30 + 1.48 [age]; r = .47, p = .003) and stroke volume (stroke volume [ml] = 85.52 + 0.80 [age]; r = .37, p = .02), and an age-related decrease in heart rate (heart rate [beats/min] = 184.66 - 0.70 [age]; r = -.50, p = .002). The dependence of the age-related increase in stroke volume on diastolic filling was emphasized by the fact that at this high workload end-systolic volume was higher (end-systolic volume [ml] = 3.09 + 0.65 [age]; r = .45, p = .003) and ejection fraction lower (ejection fraction = 88.48 - 0.18 [age]; r = -.33, p = .04) with increasing age. These findings indicate that although aging does not limit cardiac output per se in healthy community-dwelling subjects, the hemodynamic profile accompanying exercise is altered by age and can be explained by an age-related diminution in the cardiovascular response to β-adrenergic stimulation.

Original languageEnglish (US)
Pages (from-to)203-213
Number of pages11
JournalCirculation
Volume69
Issue number2
StatePublished - 1984
Externally publishedYes

Fingerprint

Cardiac Output
Stroke Volume
Dilatation
Healthy Volunteers
Heart Rate
Exercise
Workload
Independent Living
Cardiac Volume
Baltimore
Thallium
Adrenergic Agents
Coronary Disease
Longitudinal Studies
Heart Diseases
Hemodynamics

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Rodeheffer, R. J., Gerstenblith, G., Becker, L. C., Fleg, J. L., Weisfeldt, M. L., & Lakatta, E. G. (1984). Exercise cardiac output is maintained with advancing age in healthy human subjects: Cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation, 69(2), 203-213.

Exercise cardiac output is maintained with advancing age in healthy human subjects : Cardiac dilatation and increased stroke volume compensate for a diminished heart rate. / Rodeheffer, R. J.; Gerstenblith, G.; Becker, L. C.; Fleg, J. L.; Weisfeldt, M. L.; Lakatta, E. G.

In: Circulation, Vol. 69, No. 2, 1984, p. 203-213.

Research output: Contribution to journalArticle

Rodeheffer, RJ, Gerstenblith, G, Becker, LC, Fleg, JL, Weisfeldt, ML & Lakatta, EG 1984, 'Exercise cardiac output is maintained with advancing age in healthy human subjects: Cardiac dilatation and increased stroke volume compensate for a diminished heart rate', Circulation, vol. 69, no. 2, pp. 203-213.
Rodeheffer, R. J. ; Gerstenblith, G. ; Becker, L. C. ; Fleg, J. L. ; Weisfeldt, M. L. ; Lakatta, E. G. / Exercise cardiac output is maintained with advancing age in healthy human subjects : Cardiac dilatation and increased stroke volume compensate for a diminished heart rate. In: Circulation. 1984 ; Vol. 69, No. 2. pp. 203-213.
@article{aeb1673771ab418aaa6923043e054939,
title = "Exercise cardiac output is maintained with advancing age in healthy human subjects: Cardiac dilatation and increased stroke volume compensate for a diminished heart rate",
abstract = "To assess the effect of age on cardiac volumes and function in the absence of overt or occult coronary disease, we performed serial gated blood pool scans at rest and during progressive upright bicycle exercise to exhaustion in 61 participants in the Baltimore Longitudinal Study of Aging. The subjects ranged in age from 25 to 79 years and were free of cardiac disease according to their histories and results of physical, resting and stress electrocardiographic, and stress thallium scintigraphic examinations. Absolute left ventricular volumes were obtained at each workload. There were no age-related changes in cardiac output, end-diastolic or end-systolic volumes, or ejection fraction at rest. During vigorous exercise (125 W), cardiac output was not related to age (cardiac output [1/min] = 16.02 + 0.03 [age]; r = .12, p = .46). However, there was an age-related increase in end-diastolic volume (end-diastolic volume [ml] = 86.30 + 1.48 [age]; r = .47, p = .003) and stroke volume (stroke volume [ml] = 85.52 + 0.80 [age]; r = .37, p = .02), and an age-related decrease in heart rate (heart rate [beats/min] = 184.66 - 0.70 [age]; r = -.50, p = .002). The dependence of the age-related increase in stroke volume on diastolic filling was emphasized by the fact that at this high workload end-systolic volume was higher (end-systolic volume [ml] = 3.09 + 0.65 [age]; r = .45, p = .003) and ejection fraction lower (ejection fraction = 88.48 - 0.18 [age]; r = -.33, p = .04) with increasing age. These findings indicate that although aging does not limit cardiac output per se in healthy community-dwelling subjects, the hemodynamic profile accompanying exercise is altered by age and can be explained by an age-related diminution in the cardiovascular response to β-adrenergic stimulation.",
author = "Rodeheffer, {R. J.} and G. Gerstenblith and Becker, {L. C.} and Fleg, {J. L.} and Weisfeldt, {M. L.} and Lakatta, {E. G.}",
year = "1984",
language = "English (US)",
volume = "69",
pages = "203--213",
journal = "Circulation",
issn = "0009-7322",
publisher = "Lippincott Williams and Wilkins",
number = "2",

}

TY - JOUR

T1 - Exercise cardiac output is maintained with advancing age in healthy human subjects

T2 - Cardiac dilatation and increased stroke volume compensate for a diminished heart rate

AU - Rodeheffer, R. J.

AU - Gerstenblith, G.

AU - Becker, L. C.

AU - Fleg, J. L.

AU - Weisfeldt, M. L.

AU - Lakatta, E. G.

PY - 1984

Y1 - 1984

N2 - To assess the effect of age on cardiac volumes and function in the absence of overt or occult coronary disease, we performed serial gated blood pool scans at rest and during progressive upright bicycle exercise to exhaustion in 61 participants in the Baltimore Longitudinal Study of Aging. The subjects ranged in age from 25 to 79 years and were free of cardiac disease according to their histories and results of physical, resting and stress electrocardiographic, and stress thallium scintigraphic examinations. Absolute left ventricular volumes were obtained at each workload. There were no age-related changes in cardiac output, end-diastolic or end-systolic volumes, or ejection fraction at rest. During vigorous exercise (125 W), cardiac output was not related to age (cardiac output [1/min] = 16.02 + 0.03 [age]; r = .12, p = .46). However, there was an age-related increase in end-diastolic volume (end-diastolic volume [ml] = 86.30 + 1.48 [age]; r = .47, p = .003) and stroke volume (stroke volume [ml] = 85.52 + 0.80 [age]; r = .37, p = .02), and an age-related decrease in heart rate (heart rate [beats/min] = 184.66 - 0.70 [age]; r = -.50, p = .002). The dependence of the age-related increase in stroke volume on diastolic filling was emphasized by the fact that at this high workload end-systolic volume was higher (end-systolic volume [ml] = 3.09 + 0.65 [age]; r = .45, p = .003) and ejection fraction lower (ejection fraction = 88.48 - 0.18 [age]; r = -.33, p = .04) with increasing age. These findings indicate that although aging does not limit cardiac output per se in healthy community-dwelling subjects, the hemodynamic profile accompanying exercise is altered by age and can be explained by an age-related diminution in the cardiovascular response to β-adrenergic stimulation.

AB - To assess the effect of age on cardiac volumes and function in the absence of overt or occult coronary disease, we performed serial gated blood pool scans at rest and during progressive upright bicycle exercise to exhaustion in 61 participants in the Baltimore Longitudinal Study of Aging. The subjects ranged in age from 25 to 79 years and were free of cardiac disease according to their histories and results of physical, resting and stress electrocardiographic, and stress thallium scintigraphic examinations. Absolute left ventricular volumes were obtained at each workload. There were no age-related changes in cardiac output, end-diastolic or end-systolic volumes, or ejection fraction at rest. During vigorous exercise (125 W), cardiac output was not related to age (cardiac output [1/min] = 16.02 + 0.03 [age]; r = .12, p = .46). However, there was an age-related increase in end-diastolic volume (end-diastolic volume [ml] = 86.30 + 1.48 [age]; r = .47, p = .003) and stroke volume (stroke volume [ml] = 85.52 + 0.80 [age]; r = .37, p = .02), and an age-related decrease in heart rate (heart rate [beats/min] = 184.66 - 0.70 [age]; r = -.50, p = .002). The dependence of the age-related increase in stroke volume on diastolic filling was emphasized by the fact that at this high workload end-systolic volume was higher (end-systolic volume [ml] = 3.09 + 0.65 [age]; r = .45, p = .003) and ejection fraction lower (ejection fraction = 88.48 - 0.18 [age]; r = -.33, p = .04) with increasing age. These findings indicate that although aging does not limit cardiac output per se in healthy community-dwelling subjects, the hemodynamic profile accompanying exercise is altered by age and can be explained by an age-related diminution in the cardiovascular response to β-adrenergic stimulation.

UR - http://www.scopus.com/inward/record.url?scp=0021341547&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021341547&partnerID=8YFLogxK

M3 - Article

VL - 69

SP - 203

EP - 213

JO - Circulation

JF - Circulation

SN - 0009-7322

IS - 2

ER -