Ex vivo measurements of myocardial viscoelasticity using Shearwave Dispersion Ultrasound Vibrometry (SDUV)

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Stiffening of the left ventricle can compromise the ability of the heart to pump sufficient amounts of blood into the systemic circulation and could lead to heart failure. Quantifying mechanical properties of the left ventricular (LV) myocardium using a noninvasive technique would be of great benefit in clinical settings. We investigated the feasibility of using Shearwave Dispersion Ultrasound Vibrometry (SDUV) to measure viscoelasticity of the myocardium. A mechanical actuator was used to induce shear waves at multiple frequencies (40-500 Hz) in excised LV myocardium and urethane rubber samples, and a pulse echo ultrasound transducer was used to detect the motion at each frequency. An anti-symmetric Lamb wave model was fit to the shear wave dispersion curves in four orthogonal directions to obtain elastic and viscous moduli.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages2895-2898
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - Jan 1 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
CountryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

    Fingerprint

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Cite this

Nenadic, I., Urban, M. W., & Greenleaf, J. F. (2009). Ex vivo measurements of myocardial viscoelasticity using Shearwave Dispersion Ultrasound Vibrometry (SDUV). In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 (pp. 2895-2898). [5334448] (Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009). IEEE Computer Society. https://doi.org/10.1109/IEMBS.2009.5334448