Evidence for metabolic aberrations in asymptomatic persons with type 2 diabetes after initiation of simvastatin therapy

Manish Suneja, Daniel K. Fox, Brian D. Fink, Judy A. Herlein, Christopher M. Adams, William I. Sivitz

Research output: Contribution to journalArticlepeer-review

Abstract

Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) prevent vascular events and are widely prescribed, particularly in persons with type 2 diabetes. However, intolerability because of myopathic symptoms often limits their use. We investigated the effects of simvastatin on parameters of mitochondrial function and muscle gene expression in 11 subjects with type 2 diabetes, none of whom had statin intolerance. After withdrawal of statins for 2 months, we obtained blood samples, performed vastus lateralis muscle biopsies, and assessed whole body resting energy expenditure (REE). We then reinitiated therapy using simvastatin, 20 mg/d, for 1 month before repeating these studies. As expected, simvastatin lowered low-density lipoprotein, but did not induce myalgias or significant increases in serum creatine kinase. However, we found subtle but significant reductions in muscle citrate synthase activity and REE. In addition, quantitative polymerase chain reaction and gene set enrichment analysis of muscle samples revealed significantly repressed gene sets involved in mitochondrial function and induced gene sets involved in remodeling of the extracellular matrix. Furthermore, the effects of simvastatin on muscle gene sets showed some similarities to previously described changes that occur in Duchenne muscular dystrophy, polymyositis, and dermatomyositis. Although statins inhibit an early step in coenzyme Q (CoQ) biosynthesis, we observed no differences in CoQ content within skeletal muscle mitochondria, muscle tissue, or circulating platelets. In summary, we report subtle changes in whole body energetics, mitochondrial citrate synthase activity, and microarray data consistent with subclinical myopathy. Although the benefits of statin therapy are clear, further understanding of muscular perturbations should help guide safety and tolerability.

Original languageEnglish (US)
Pages (from-to)176-187
Number of pages12
JournalTranslational Research
Volume166
Issue number2
DOIs
StatePublished - Aug 1 2015

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Physiology (medical)
  • Biochemistry, medical

Fingerprint

Dive into the research topics of 'Evidence for metabolic aberrations in asymptomatic persons with type 2 diabetes after initiation of simvastatin therapy'. Together they form a unique fingerprint.

Cite this