Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

Srinivasan Rajagopalan, Michael J. Yaszemski, Richard Robb

Research output: Contribution to journalConference article

17 Scopus citations

Abstract

Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

Original languageEnglish (US)
Pages (from-to)1456-1465
Number of pages10
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5370 III
DOIs
StatePublished - Oct 27 2004
EventProgress in Biomedical Optics and Imaging - Medical Imaging 2004: Imaging Processing - San Diego, CA, United States
Duration: Feb 16 2004Feb 19 2004

Keywords

  • MicroCT
  • Scaffolds
  • Thresholding
  • Tissue Engineering

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering'. Together they form a unique fingerprint.

  • Cite this