Evaluation of computer-based computer tomography stratification against outcome models in connective tissue disease-related interstitial lung disease: A patient outcome study

Joseph Jacob, Brian Jack Bartholmai, Srinivasan Rajagopalan, Anne Laure Brun, Ryoko Egashira, Ronald Karwoski, Maria Kokosi, Athol U. Wells, David M. Hansell

Research output: Contribution to journalArticle

26 Scopus citations


Background: To evaluate computer-based computer tomography (CT) analysis (CALIPER) against visual CT scoring and pulmonary function tests (PFTs) when predicting mortality in patients with connective tissue disease-related interstitial lung disease (CTD-ILD). To identify outcome differences between distinct CTD-ILD groups derived following automated stratification of CALIPER variables. Methods: A total of 203 consecutive patients with assorted CTD-ILDs had CT parenchymal patterns evaluated by CALIPER and visual CT scoring: honeycombing, reticular pattern, ground glass opacities, pulmonary vessel volume, emphysema, and traction bronchiectasis. CT scores were evaluated against pulmonary function tests: forced vital capacity, diffusing capacity for carbon monoxide, carbon monoxide transfer coefficient, and composite physiologic index for mortality analysis. Automated stratification of CALIPER-CT variables was evaluated in place of and alongside forced vital capacity and diffusing capacity for carbon monoxide in the ILD gender, age physiology (ILD-GAP) model using receiver operating characteristic curve analysis. Results: Cox regression analyses identified four independent predictors of mortality: patient age (P < 0.0001), smoking history (P = 0.0003), carbon monoxide transfer coefficient (P = 0.003), and pulmonary vessel volume (P < 0.0001). Automated stratification of CALIPER variables identified three morphologically distinct groups which were stronger predictors of mortality than all CT and functional indices. The Stratified-CT model substituted automated stratified groups for functional indices in the ILD-GAP model and maintained model strength (area under curve (AUC) = 0.74, P < 0.0001), ILD-GAP (AUC = 0.72, P < 0.0001). Combining automated stratified groups with the ILD-GAP model (stratified CT-GAP model) strengthened predictions of 1- and 2-year mortality: ILD-GAP (AUC = 0.87 and 0.86, respectively); stratified CT-GAP (AUC = 0.89 and 0.88, respectively). Conclusions: CALIPER-derived pulmonary vessel volume is an independent predictor of mortality across all CTD-ILD patients. Furthermore, automated stratification of CALIPER CT variables represents a novel method of prognostication at least as robust as PFTs in CTD-ILD patients.

Original languageEnglish (US)
Article number190
JournalBMC Medicine
Issue number1
StatePublished - Nov 23 2016



  • Computer tomography
  • Connective tissue disease
  • Interstitial lung disease
  • Pulmonary fibrosis
  • Quantitative CT

ASJC Scopus subject areas

  • Medicine(all)

Cite this