Evaluation of a projection-domain lung nodule insertion technique in thoracic CT

Chi Ma, Baiyu Chen, Chi Wan Koo, Edwin A. Takahashi, Joel G. Fletcher, Cynthia H. McCollough, David L. Levin, Ronald S. Kuzo, Lyndsay D. Viers, Stephanie A. Vincent Sheldon, Shuai Leng, Lifeng Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Task-based assessment of computed tomography (CT) image quality requires a large number of cases with ground truth. Inserting lesions into existing cases to simulate positive cases is a promising alternative approach. The aim of this study was to evaluate a recently-developed raw-data based lesion insertion technique in thoracic CT. Lung lesions were segmented from patient CT images, forward projected, and reinserted into the same patient CT projection data. In total, 32 nodules of various attenuations were segmented from 21 CT cases. Two experienced radiologists and 2 residents blinded to the process independently evaluated these inserted nodules in two sub-studies. First, the 32 inserted and the 32 original nodules were presented in a randomized order and each received a rating score from 1 to 10 (1=absolutely artificial to 10=absolutely realistic). Second, the inserted and the corresponding original lesions were presented side-by-side to each reader, who identified the inserted lesion and provided a confidence score (1=no confidence to 5=completely certain). For the randomized evaluation, discrimination of real versus artificial nodules was poor with areas under the receiver operative characteristic curves being 0.69 (95% CI: 0.58-0.78), 0.57 (95% CI: 0.46-0.68), and 0.62 (95% CI: 0.54-0.69) for the 2 radiologists, 2 residents, and all 4 readers, respectively. For the side-by-side evaluation, although all 4 readers correctly identified inserted lesions in 103/128 pairs, the confidence score was moderate (2.6). Our projection-domain based lung nodule insertion technique provides a robust method to artificially generate clinical cases that prove to be difficult to differentiate from real cases.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016
Subtitle of host publicationPhysics of Medical Imaging
EditorsDespina Kontos, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510600188
DOIs
StatePublished - 2016
EventMedical Imaging 2016: Physics of Medical Imaging - San Diego, United States
Duration: Feb 28 2016Mar 2 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9783
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2016: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period2/28/163/2/16

Keywords

  • Image quality assessment
  • lesion insertion
  • lesion simulation
  • lung nodules
  • observer study
  • radiation dose reduction
  • thoracic CT

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Evaluation of a projection-domain lung nodule insertion technique in thoracic CT'. Together they form a unique fingerprint.

Cite this