Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling

Anantha Vijay R. Santhanam, Livius V. D'Uscio, Zvonimir S. Katusic

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

This study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Wild-type and GTP cyclohydrolase I (GTPCH-I)-deficient hph1 mice were administered EPO (1000 U/kg/day, s.c., 3 days). Cerebral microvessels of hph1 mice demonstrated reduced tetrahydrobiopterin (BH4) bioavailability, increased production of superoxide anions and impaired endothelial NO signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8-dihydrobiopterin, the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8-dihydrobiopterin. Moreover, EPO decreased the levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of endothelial NO synthase uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase, and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH-I siRNA-treated human brain microvascular endothelial cells exposed to EPO (1 U/mL or 10 U/mL; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium.

Original languageEnglish (US)
Pages (from-to)521-529
Number of pages9
JournalJournal of neurochemistry
Volume131
Issue number4
DOIs
StatePublished - Nov 1 2014

Keywords

  • GTP cyclohydrolase I
  • brain
  • cerebral microvessels
  • hph1 mice
  • nitric oxide
  • superoxide

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling'. Together they form a unique fingerprint.

  • Cite this