Epigenetic mechanisms of protein tyrosine phosphatase 6 suppression in diffuse large B-cell lymphoma: Implications for epigenetic therapy

T. E. Witzig, G. Hu, S. M. Offer, L. E. Wellik, J. J. Han, M. J. Stenson, A. Dogan, R. B. Diasio, M. Gupta

Research output: Contribution to journalArticle

18 Scopus citations


Protein tyrosine phosphatases such as PTPN6 can be downregulated in various neoplasms. PTPN6 expression by immunohistochemistry in 40 diffuse large B-cell lymphoma (DLBCL) tumors was lost or suppressed in 53% (21/40). To elucidate the molecular mechanisms of PTPN6 suppression, we performed a comprehensive epigenetic analysis of PTPN6 promoter 2 (P2). None of the DLBCL primary tumors (0/37) had PTPN6 hypermethylation on the CpG1 island using methylation-specific PCR, pyrosequencing, and high-resolution melting assays. However, hypermethylation in 57% (21/37) of cases was found in a novel CpG island (CpG2) in P2. PTPN6 gene suppression was reversed by 5-aza-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor, and the histone deacetylase inhibitor (HDACi) LBH589. LBH589 and 5-Aza in combination inhibited DLBCL survival and PTPN6 hypermethylation at CpG2. The role of histone modifications was investigated with a chromatin-immunoprecipitation assay demonstrating that PTPN6 P2 is associated with silencing histone marks H3K27me3 and H3K9me3 in DLBCL cells but not normal B cells. 3-Deazaneplanocin A, a histone methyltransferase inhibitor, decreased the H3K27me3 mark, whereas HDACi LBH589 increased the H3K9Ac mark within P2 resulting in re-expression of PTPN6. These studies have uncovered novel epigenetic mechanisms of PTPN6 suppression and suggest that PTPN6 may be a potential target of epigenetic therapy in DLBCL.

Original languageEnglish (US)
Pages (from-to)147-154
Number of pages8
Issue number1
StatePublished - Jan 1 2014



  • CpG methylation
  • LBH589
  • PTPN6
  • azacytidine
  • histone methylation

ASJC Scopus subject areas

  • Hematology
  • Oncology
  • Cancer Research

Cite this