Eosinophils increase neuron branching in human and murine skin and in vitro

Erin L. Foster, Eric L. Simpson, Lorna J. Fredrikson, James J. Lee, Nancy A. Lee, Allison D. Fryer, David B. Jacoby

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.

Original languageEnglish (US)
Article numbere22029
JournalPloS one
Volume6
Issue number7
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Eosinophils increase neuron branching in human and murine skin and in vitro'. Together they form a unique fingerprint.

Cite this