Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow

Virginia M Miller, P. M. Vanhoutte

Research output: Contribution to journalArticle

161 Citations (Scopus)

Abstract

Chronic increases in blood flow caused by an arteriovenous fistula augment endothelium-dependent relaxations to acetylcholine. To determine whether endothelial muscarinic receptors are altered, concentration-response curves to acetylcholine were obtained in the presence of pirenzepine in fistula- and sham-operated canine femoral arteries. Pirenzepine inhibited the response to acetylcholine in both arteries. The pA2 (log K(b)) for the antagonist was the same. A bioassay system was used to assess release of endothelium-derived relaxing factor. Rings of femoral artery (without endothelium) from unoperated dogs relaxed more when superfused with perfusate derived from endothelium of fistula-operated arteries during acetylcholine stimulation. Rings without endothelium of sham- and fistula-operated arteries relaxed to the same extent when superfused with perfusate derived from the endothelium of unoperated femoral arteries. These results suggest that augmented relaxations to acetylcholine in canine arteries where blood flow is chronically elevated do not result from changes in the subtype of endothelial muscarinic receptors or in the sensitivity of the underlying smooth muscle to endothelium-derived relaxing factor(s). They are likely due to increased release of endothelium-derived relaxing factor(s) on muscarinic activation.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume255
Issue number3
StatePublished - 1988

Fingerprint

Acetylcholine
Endothelium
Endothelium-Dependent Relaxing Factors
Femoral Artery
Arteries
Fistula
Pirenzepine
Muscarinic Receptors
Canidae
Arteriovenous Fistula
Biological Assay
Cholinergic Agents
Smooth Muscle
Dogs

ASJC Scopus subject areas

  • Physiology

Cite this

@article{716262670af346febe20f090951887da,
title = "Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow",
abstract = "Chronic increases in blood flow caused by an arteriovenous fistula augment endothelium-dependent relaxations to acetylcholine. To determine whether endothelial muscarinic receptors are altered, concentration-response curves to acetylcholine were obtained in the presence of pirenzepine in fistula- and sham-operated canine femoral arteries. Pirenzepine inhibited the response to acetylcholine in both arteries. The pA2 (log K(b)) for the antagonist was the same. A bioassay system was used to assess release of endothelium-derived relaxing factor. Rings of femoral artery (without endothelium) from unoperated dogs relaxed more when superfused with perfusate derived from endothelium of fistula-operated arteries during acetylcholine stimulation. Rings without endothelium of sham- and fistula-operated arteries relaxed to the same extent when superfused with perfusate derived from the endothelium of unoperated femoral arteries. These results suggest that augmented relaxations to acetylcholine in canine arteries where blood flow is chronically elevated do not result from changes in the subtype of endothelial muscarinic receptors or in the sensitivity of the underlying smooth muscle to endothelium-derived relaxing factor(s). They are likely due to increased release of endothelium-derived relaxing factor(s) on muscarinic activation.",
author = "Miller, {Virginia M} and Vanhoutte, {P. M.}",
year = "1988",
language = "English (US)",
volume = "255",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow

AU - Miller, Virginia M

AU - Vanhoutte, P. M.

PY - 1988

Y1 - 1988

N2 - Chronic increases in blood flow caused by an arteriovenous fistula augment endothelium-dependent relaxations to acetylcholine. To determine whether endothelial muscarinic receptors are altered, concentration-response curves to acetylcholine were obtained in the presence of pirenzepine in fistula- and sham-operated canine femoral arteries. Pirenzepine inhibited the response to acetylcholine in both arteries. The pA2 (log K(b)) for the antagonist was the same. A bioassay system was used to assess release of endothelium-derived relaxing factor. Rings of femoral artery (without endothelium) from unoperated dogs relaxed more when superfused with perfusate derived from endothelium of fistula-operated arteries during acetylcholine stimulation. Rings without endothelium of sham- and fistula-operated arteries relaxed to the same extent when superfused with perfusate derived from the endothelium of unoperated femoral arteries. These results suggest that augmented relaxations to acetylcholine in canine arteries where blood flow is chronically elevated do not result from changes in the subtype of endothelial muscarinic receptors or in the sensitivity of the underlying smooth muscle to endothelium-derived relaxing factor(s). They are likely due to increased release of endothelium-derived relaxing factor(s) on muscarinic activation.

AB - Chronic increases in blood flow caused by an arteriovenous fistula augment endothelium-dependent relaxations to acetylcholine. To determine whether endothelial muscarinic receptors are altered, concentration-response curves to acetylcholine were obtained in the presence of pirenzepine in fistula- and sham-operated canine femoral arteries. Pirenzepine inhibited the response to acetylcholine in both arteries. The pA2 (log K(b)) for the antagonist was the same. A bioassay system was used to assess release of endothelium-derived relaxing factor. Rings of femoral artery (without endothelium) from unoperated dogs relaxed more when superfused with perfusate derived from endothelium of fistula-operated arteries during acetylcholine stimulation. Rings without endothelium of sham- and fistula-operated arteries relaxed to the same extent when superfused with perfusate derived from the endothelium of unoperated femoral arteries. These results suggest that augmented relaxations to acetylcholine in canine arteries where blood flow is chronically elevated do not result from changes in the subtype of endothelial muscarinic receptors or in the sensitivity of the underlying smooth muscle to endothelium-derived relaxing factor(s). They are likely due to increased release of endothelium-derived relaxing factor(s) on muscarinic activation.

UR - http://www.scopus.com/inward/record.url?scp=0023790176&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023790176&partnerID=8YFLogxK

M3 - Article

C2 - 3137826

AN - SCOPUS:0023790176

VL - 255

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -