Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures

A. Keith Stewart, D. Robert Sutherland, Shaherose Nanji, Yongjun Zhao, Carolyn Lutzko, Rakash Nayar, Brian Peck, Christine Ruedy, Gary McGarrity, John Tisdale, Lan D. Dubé

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

We conducted a phase I hematopoietic stem cell (HSC) gene-marking trial in patients undergoing autologous blood or marrow stem cell transplant for the treatment of multiple myeloma. Between 500 and 1000 ml of bone marrow was harvested from each of 14 myeloma patients and 1 syngeneic donor. A mean of 3.3 x 109 cells per patient were plated in 20 to 50 long-term marrow culture (LTMC) flasks and maintained for 3 weeks. LTMCs were exposed on days 8 and 15 to clinical-grade neo(r)-containing retrovirus supernatant (G1Na). A mean of 8.23 x l08 day-21 LTMC cells containing 5.2 x 104 gene-marked granulocyte- macrophage progenitor cells (CFU-GM) were infused along with an unmanipulated peripheral blood stem cell graft into each patient after myeloablative therapy. Proviral DNA was detected in 71% of 68 tested blood and bone marrow samples and 150 of 2936 (5.1%) CFU-GM derived from patient bone marrow samples after transplant. The proportion of proviral DNA-positive CFU-GM declined from a mean of 9.8% at 3 months to a mean of 2.3% at 24 months postinfusion. Southern blots of 26 marrow and blood samples were negative. Semiquantitative PCR analysis indicated that gene transfer was achieved in 0.01-1% of total bone marrow and blood mononuclear cells (MNCs). Proviral DNA was also observed in EBV-transformed B lymphocytes, in CD34+-enriched bone marrow cells, and in CFUs derived from the latter progenitors. Gene-modified cells were detected by PCR in peripheral blood and bone marrow for 24 months after infusion of LTMC cells. Sensitivity and specificity of the PCR assays were independently validated in four laboratories. Our data confirm that HSCs may be successfully transduced in stromal based culture systems. The major obstacle to therapeutic application of this approach remains the overall low level of genetically modified cells among the total hematopoietic cell pool in vivo.

Original languageEnglish (US)
Pages (from-to)1953-1964
Number of pages12
JournalHuman gene therapy
Volume10
Issue number12
DOIs
StatePublished - Aug 10 1999

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures'. Together they form a unique fingerprint.

Cite this