Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma

Boris Blechacz, Patrick L. Splinter, Suzanne Greiner, Rae Myers, Kah-Whye Peng, Mark J Federspiel, Stephen J Russell, Nicholas F La Russo

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

The oncolytic measles virus Edmonston strain (MV-Edm), a nonpathogenic virus targeting cells expressing abundant CD46, selectively destroys neoplastic tissue. Clinical development of MV-Edm would benefit from noninvasive monitoring strategies to determine the speed and extent of the spread of the virus in treated patients and the location of virus-infected cells. We evaluated recombinant MV-Edm expressing carcinoembryonic antigen (CEA) or the human sodium iodide symporter (hNIS) for oncolytic potential in hepatocellular carcinoma (HCC) and efficiency in tracking viruses in vivo by noninvasive monitoring. CD46 expression in human HCC and primary hepatocytes was assessed by flow cytometry and immunohistochemistry. Infectivity, syncytium formation, and cytotoxicity of recombinant MV-Edm in HCC cell lines were evaluated by fluorescence microscopy, crystal violet staining, and the MTS assay. Transgene expression in HCC cell lines after infection with recombinant MV-Edm in vitro and in vivo was assessed by CEA concentration, 125I-uptake, and 123I-imaging studies. Toxicology studies were performed in IfnarKO × CD46 transgenic mice. The CD46 receptor was highly expressed in HCC compared to nonmalignant hepatic tissue. Recombinant MV-Edm efficiently infected HCC cell lines, resulting in extensive syncytium formation followed by cell death. Transduction of HCC cell lines and subcutaneous HCC xenografts with recombinant MV-Edm resulted in high-level expression of transgenes in vitro and in vivo. MV-Edm was nontoxic in susceptible mice. Intratumoral and intravenous therapy with recombinant MV-Edm resulted in inhibition of tumor growth and prolongation of survival with complete tumor regression in up to one third of animals. In conclusion, engineered MV-Edm may be a potent and novel cancer gene therapy system for HCC. MV-Edm expressing CEA or hNIS elicited oncolytic effects in human HCC cell lines in vitro and in vivo, enabling the spread of the virus to be monitored in a noninvasive manner.

Original languageEnglish (US)
Pages (from-to)1465-1477
Number of pages13
JournalHepatology
Volume44
Issue number6
DOIs
StatePublished - Dec 2006

Fingerprint

Measles virus
Hepatocellular Carcinoma
Viruses
Carcinoembryonic Antigen
Cell Line
Therapeutics
Giant Cells
Transgenes
Oncolytic Viruses
Gentian Violet
Neoplasm Genes
Fluorescence Microscopy
Heterografts
Genetic Therapy
Toxicology
Transgenic Mice
Hepatocytes
Neoplasms
Flow Cytometry
Cell Death

ASJC Scopus subject areas

  • Hepatology

Cite this

Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. / Blechacz, Boris; Splinter, Patrick L.; Greiner, Suzanne; Myers, Rae; Peng, Kah-Whye; Federspiel, Mark J; Russell, Stephen J; La Russo, Nicholas F.

In: Hepatology, Vol. 44, No. 6, 12.2006, p. 1465-1477.

Research output: Contribution to journalArticle

@article{cacb9010822d423a8678ce8e11beb3eb,
title = "Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma",
abstract = "The oncolytic measles virus Edmonston strain (MV-Edm), a nonpathogenic virus targeting cells expressing abundant CD46, selectively destroys neoplastic tissue. Clinical development of MV-Edm would benefit from noninvasive monitoring strategies to determine the speed and extent of the spread of the virus in treated patients and the location of virus-infected cells. We evaluated recombinant MV-Edm expressing carcinoembryonic antigen (CEA) or the human sodium iodide symporter (hNIS) for oncolytic potential in hepatocellular carcinoma (HCC) and efficiency in tracking viruses in vivo by noninvasive monitoring. CD46 expression in human HCC and primary hepatocytes was assessed by flow cytometry and immunohistochemistry. Infectivity, syncytium formation, and cytotoxicity of recombinant MV-Edm in HCC cell lines were evaluated by fluorescence microscopy, crystal violet staining, and the MTS assay. Transgene expression in HCC cell lines after infection with recombinant MV-Edm in vitro and in vivo was assessed by CEA concentration, 125I-uptake, and 123I-imaging studies. Toxicology studies were performed in IfnarKO × CD46 transgenic mice. The CD46 receptor was highly expressed in HCC compared to nonmalignant hepatic tissue. Recombinant MV-Edm efficiently infected HCC cell lines, resulting in extensive syncytium formation followed by cell death. Transduction of HCC cell lines and subcutaneous HCC xenografts with recombinant MV-Edm resulted in high-level expression of transgenes in vitro and in vivo. MV-Edm was nontoxic in susceptible mice. Intratumoral and intravenous therapy with recombinant MV-Edm resulted in inhibition of tumor growth and prolongation of survival with complete tumor regression in up to one third of animals. In conclusion, engineered MV-Edm may be a potent and novel cancer gene therapy system for HCC. MV-Edm expressing CEA or hNIS elicited oncolytic effects in human HCC cell lines in vitro and in vivo, enabling the spread of the virus to be monitored in a noninvasive manner.",
author = "Boris Blechacz and Splinter, {Patrick L.} and Suzanne Greiner and Rae Myers and Kah-Whye Peng and Federspiel, {Mark J} and Russell, {Stephen J} and {La Russo}, {Nicholas F}",
year = "2006",
month = "12",
doi = "10.1002/hep.21437",
language = "English (US)",
volume = "44",
pages = "1465--1477",
journal = "Hepatology",
issn = "0270-9139",
publisher = "John Wiley and Sons Ltd",
number = "6",

}

TY - JOUR

T1 - Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma

AU - Blechacz, Boris

AU - Splinter, Patrick L.

AU - Greiner, Suzanne

AU - Myers, Rae

AU - Peng, Kah-Whye

AU - Federspiel, Mark J

AU - Russell, Stephen J

AU - La Russo, Nicholas F

PY - 2006/12

Y1 - 2006/12

N2 - The oncolytic measles virus Edmonston strain (MV-Edm), a nonpathogenic virus targeting cells expressing abundant CD46, selectively destroys neoplastic tissue. Clinical development of MV-Edm would benefit from noninvasive monitoring strategies to determine the speed and extent of the spread of the virus in treated patients and the location of virus-infected cells. We evaluated recombinant MV-Edm expressing carcinoembryonic antigen (CEA) or the human sodium iodide symporter (hNIS) for oncolytic potential in hepatocellular carcinoma (HCC) and efficiency in tracking viruses in vivo by noninvasive monitoring. CD46 expression in human HCC and primary hepatocytes was assessed by flow cytometry and immunohistochemistry. Infectivity, syncytium formation, and cytotoxicity of recombinant MV-Edm in HCC cell lines were evaluated by fluorescence microscopy, crystal violet staining, and the MTS assay. Transgene expression in HCC cell lines after infection with recombinant MV-Edm in vitro and in vivo was assessed by CEA concentration, 125I-uptake, and 123I-imaging studies. Toxicology studies were performed in IfnarKO × CD46 transgenic mice. The CD46 receptor was highly expressed in HCC compared to nonmalignant hepatic tissue. Recombinant MV-Edm efficiently infected HCC cell lines, resulting in extensive syncytium formation followed by cell death. Transduction of HCC cell lines and subcutaneous HCC xenografts with recombinant MV-Edm resulted in high-level expression of transgenes in vitro and in vivo. MV-Edm was nontoxic in susceptible mice. Intratumoral and intravenous therapy with recombinant MV-Edm resulted in inhibition of tumor growth and prolongation of survival with complete tumor regression in up to one third of animals. In conclusion, engineered MV-Edm may be a potent and novel cancer gene therapy system for HCC. MV-Edm expressing CEA or hNIS elicited oncolytic effects in human HCC cell lines in vitro and in vivo, enabling the spread of the virus to be monitored in a noninvasive manner.

AB - The oncolytic measles virus Edmonston strain (MV-Edm), a nonpathogenic virus targeting cells expressing abundant CD46, selectively destroys neoplastic tissue. Clinical development of MV-Edm would benefit from noninvasive monitoring strategies to determine the speed and extent of the spread of the virus in treated patients and the location of virus-infected cells. We evaluated recombinant MV-Edm expressing carcinoembryonic antigen (CEA) or the human sodium iodide symporter (hNIS) for oncolytic potential in hepatocellular carcinoma (HCC) and efficiency in tracking viruses in vivo by noninvasive monitoring. CD46 expression in human HCC and primary hepatocytes was assessed by flow cytometry and immunohistochemistry. Infectivity, syncytium formation, and cytotoxicity of recombinant MV-Edm in HCC cell lines were evaluated by fluorescence microscopy, crystal violet staining, and the MTS assay. Transgene expression in HCC cell lines after infection with recombinant MV-Edm in vitro and in vivo was assessed by CEA concentration, 125I-uptake, and 123I-imaging studies. Toxicology studies were performed in IfnarKO × CD46 transgenic mice. The CD46 receptor was highly expressed in HCC compared to nonmalignant hepatic tissue. Recombinant MV-Edm efficiently infected HCC cell lines, resulting in extensive syncytium formation followed by cell death. Transduction of HCC cell lines and subcutaneous HCC xenografts with recombinant MV-Edm resulted in high-level expression of transgenes in vitro and in vivo. MV-Edm was nontoxic in susceptible mice. Intratumoral and intravenous therapy with recombinant MV-Edm resulted in inhibition of tumor growth and prolongation of survival with complete tumor regression in up to one third of animals. In conclusion, engineered MV-Edm may be a potent and novel cancer gene therapy system for HCC. MV-Edm expressing CEA or hNIS elicited oncolytic effects in human HCC cell lines in vitro and in vivo, enabling the spread of the virus to be monitored in a noninvasive manner.

UR - http://www.scopus.com/inward/record.url?scp=33845674583&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845674583&partnerID=8YFLogxK

U2 - 10.1002/hep.21437

DO - 10.1002/hep.21437

M3 - Article

C2 - 17133484

AN - SCOPUS:33845674583

VL - 44

SP - 1465

EP - 1477

JO - Hepatology

JF - Hepatology

SN - 0270-9139

IS - 6

ER -