Effects of insulin sensitivity, body composition, and fitness on lipoprotein particle sizes and concentrations determined by nuclear magnetic resonance

Brian A. Irving, K Sreekumaran Nair, Manivannan Srinivasan

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Context: Insulin resistance has been reported to be associated with development of atherogenic dyslipidemia. However, the confounding effects that obesity and low levels of cardiorespiratory fitness have on the relationship between insulin resistance and the development of atherogenic dyslipidemia remain to be adequately addressed. Objective: This study sought to examine the independent and combined effects of insulin sensitivity, body composition, and cardiorespiratory fitness on lipoprotein particle sizes and concentrations. Methods: Eight-four healthy, nondiabetic men (n = 43) and women (n = 41) were studied. The participants had a wide range of ages (18-30 and 65-80 yr), body composition (7.2-52.8% fat), and cardiorespiratory fitness (VO2 peak, 13.5-66.2 ml/kg=min). Body composition, cardiorespiratory fitness, insulin sensitivity, and lipoprotein particle profiles were assessed using dual-energy x-ray absorptiometry, cardiopulmonary exercise testing, a hyperinsulinemic-euglycemic clamp, and nuclear magnetic resonance spectroscopy, respectively. Results: Low levels of insulin sensitivity and cardiorespiratory fitness and higher levels of adiposity were associated with the accumulation of small, dense, low-density lipoprotein particles; small high-density lipoprotein particles; triglycerides; and very low-density lipoprotein particles. Multivariate forward-stepwise regression revealed that higher levels of adiposity, in particular truncal fat, were the strongest predictor of the lipoprotein particle size and concentration data, followed by insulin sensitivity. Conclusions: As expected, the accumulation of atherogenic lipoprotein particles (e.g. small, dense, low-density lipoprotein particles and small, high-density lipoprotein particles) was associated with low levels of insulin sensitivity, cardiorespiratory fitness, and higher levels of adiposity. However, multivariate forward-stepwise regression revealed that triglycerides, followed by truncal fat mass, were the strongest predictors of the lipoprotein particle size and concentration data.

Original languageEnglish (US)
JournalJournal of Clinical Endocrinology and Metabolism
Volume96
Issue number4
DOIs
StatePublished - Apr 2011

Fingerprint

Body Composition
Particle Size
Lipoproteins
Insulin Resistance
Magnetic Resonance Spectroscopy
Particle size
Nuclear magnetic resonance
Insulin
Chemical analysis
Adiposity
Fats
HDL Lipoproteins
Dyslipidemias
LDL Lipoproteins
Triglycerides
Glucose Clamp Technique
VLDL Lipoproteins
Clamping devices
Nuclear magnetic resonance spectroscopy
Cardiorespiratory Fitness

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry
  • Endocrinology
  • Biochemistry, medical
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{384eec4d9cbe4304aeabab34ef93b8b2,
title = "Effects of insulin sensitivity, body composition, and fitness on lipoprotein particle sizes and concentrations determined by nuclear magnetic resonance",
abstract = "Context: Insulin resistance has been reported to be associated with development of atherogenic dyslipidemia. However, the confounding effects that obesity and low levels of cardiorespiratory fitness have on the relationship between insulin resistance and the development of atherogenic dyslipidemia remain to be adequately addressed. Objective: This study sought to examine the independent and combined effects of insulin sensitivity, body composition, and cardiorespiratory fitness on lipoprotein particle sizes and concentrations. Methods: Eight-four healthy, nondiabetic men (n = 43) and women (n = 41) were studied. The participants had a wide range of ages (18-30 and 65-80 yr), body composition (7.2-52.8{\%} fat), and cardiorespiratory fitness (VO2 peak, 13.5-66.2 ml/kg=min). Body composition, cardiorespiratory fitness, insulin sensitivity, and lipoprotein particle profiles were assessed using dual-energy x-ray absorptiometry, cardiopulmonary exercise testing, a hyperinsulinemic-euglycemic clamp, and nuclear magnetic resonance spectroscopy, respectively. Results: Low levels of insulin sensitivity and cardiorespiratory fitness and higher levels of adiposity were associated with the accumulation of small, dense, low-density lipoprotein particles; small high-density lipoprotein particles; triglycerides; and very low-density lipoprotein particles. Multivariate forward-stepwise regression revealed that higher levels of adiposity, in particular truncal fat, were the strongest predictor of the lipoprotein particle size and concentration data, followed by insulin sensitivity. Conclusions: As expected, the accumulation of atherogenic lipoprotein particles (e.g. small, dense, low-density lipoprotein particles and small, high-density lipoprotein particles) was associated with low levels of insulin sensitivity, cardiorespiratory fitness, and higher levels of adiposity. However, multivariate forward-stepwise regression revealed that triglycerides, followed by truncal fat mass, were the strongest predictors of the lipoprotein particle size and concentration data.",
author = "Irving, {Brian A.} and Nair, {K Sreekumaran} and Manivannan Srinivasan",
year = "2011",
month = "4",
doi = "10.1210/jc.2010-2170",
language = "English (US)",
volume = "96",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "4",

}

TY - JOUR

T1 - Effects of insulin sensitivity, body composition, and fitness on lipoprotein particle sizes and concentrations determined by nuclear magnetic resonance

AU - Irving, Brian A.

AU - Nair, K Sreekumaran

AU - Srinivasan, Manivannan

PY - 2011/4

Y1 - 2011/4

N2 - Context: Insulin resistance has been reported to be associated with development of atherogenic dyslipidemia. However, the confounding effects that obesity and low levels of cardiorespiratory fitness have on the relationship between insulin resistance and the development of atherogenic dyslipidemia remain to be adequately addressed. Objective: This study sought to examine the independent and combined effects of insulin sensitivity, body composition, and cardiorespiratory fitness on lipoprotein particle sizes and concentrations. Methods: Eight-four healthy, nondiabetic men (n = 43) and women (n = 41) were studied. The participants had a wide range of ages (18-30 and 65-80 yr), body composition (7.2-52.8% fat), and cardiorespiratory fitness (VO2 peak, 13.5-66.2 ml/kg=min). Body composition, cardiorespiratory fitness, insulin sensitivity, and lipoprotein particle profiles were assessed using dual-energy x-ray absorptiometry, cardiopulmonary exercise testing, a hyperinsulinemic-euglycemic clamp, and nuclear magnetic resonance spectroscopy, respectively. Results: Low levels of insulin sensitivity and cardiorespiratory fitness and higher levels of adiposity were associated with the accumulation of small, dense, low-density lipoprotein particles; small high-density lipoprotein particles; triglycerides; and very low-density lipoprotein particles. Multivariate forward-stepwise regression revealed that higher levels of adiposity, in particular truncal fat, were the strongest predictor of the lipoprotein particle size and concentration data, followed by insulin sensitivity. Conclusions: As expected, the accumulation of atherogenic lipoprotein particles (e.g. small, dense, low-density lipoprotein particles and small, high-density lipoprotein particles) was associated with low levels of insulin sensitivity, cardiorespiratory fitness, and higher levels of adiposity. However, multivariate forward-stepwise regression revealed that triglycerides, followed by truncal fat mass, were the strongest predictors of the lipoprotein particle size and concentration data.

AB - Context: Insulin resistance has been reported to be associated with development of atherogenic dyslipidemia. However, the confounding effects that obesity and low levels of cardiorespiratory fitness have on the relationship between insulin resistance and the development of atherogenic dyslipidemia remain to be adequately addressed. Objective: This study sought to examine the independent and combined effects of insulin sensitivity, body composition, and cardiorespiratory fitness on lipoprotein particle sizes and concentrations. Methods: Eight-four healthy, nondiabetic men (n = 43) and women (n = 41) were studied. The participants had a wide range of ages (18-30 and 65-80 yr), body composition (7.2-52.8% fat), and cardiorespiratory fitness (VO2 peak, 13.5-66.2 ml/kg=min). Body composition, cardiorespiratory fitness, insulin sensitivity, and lipoprotein particle profiles were assessed using dual-energy x-ray absorptiometry, cardiopulmonary exercise testing, a hyperinsulinemic-euglycemic clamp, and nuclear magnetic resonance spectroscopy, respectively. Results: Low levels of insulin sensitivity and cardiorespiratory fitness and higher levels of adiposity were associated with the accumulation of small, dense, low-density lipoprotein particles; small high-density lipoprotein particles; triglycerides; and very low-density lipoprotein particles. Multivariate forward-stepwise regression revealed that higher levels of adiposity, in particular truncal fat, were the strongest predictor of the lipoprotein particle size and concentration data, followed by insulin sensitivity. Conclusions: As expected, the accumulation of atherogenic lipoprotein particles (e.g. small, dense, low-density lipoprotein particles and small, high-density lipoprotein particles) was associated with low levels of insulin sensitivity, cardiorespiratory fitness, and higher levels of adiposity. However, multivariate forward-stepwise regression revealed that triglycerides, followed by truncal fat mass, were the strongest predictors of the lipoprotein particle size and concentration data.

UR - http://www.scopus.com/inward/record.url?scp=79953883575&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953883575&partnerID=8YFLogxK

U2 - 10.1210/jc.2010-2170

DO - 10.1210/jc.2010-2170

M3 - Article

VL - 96

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 4

ER -