TY - JOUR
T1 - Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements
AU - Parratte, Sebastien
AU - Pagnano, Mark W.
AU - Trousdale, Robert T.
AU - Berry, Daniel J.
PY - 2010/9/15
Y1 - 2010/9/15
N2 - Background: One long-held tenet of total knee arthroplasty is that implant durability is maximized when postoperative limb alignment is corrected to 0° ± 3° relative to the mechanical axis. Recently, substantial health-care resources have been devoted to computer navigation systems that allow surgeons to more often achieve that alignment. We hypothesized that a postoperative mechanical axis of 0° ± 3° would result in better long-term survival of total knee arthroplasty implants as compared with that in a group of outliers. Methods: Clinical and radiographic data were reviewed retrospectively to determine the fifteen-year Kaplan-Meier survival rate following 398 primary total knee arthroplasties performed with cement in 280 patients from 1985 to 1990. Preoperatively, most knees were in varus mechanical alignment (mean and standard deviation, 6° ± 8.8° of varus [range, 30° of varus to 22° of valgus]), whereas postoperatively most knees were corrected to neutral (mean and standard deviation, 0° ± 2.8° [range, 8° of varus to 9° of valgus]). Postoperatively, we defined a mechanically aligned group of 292 knees (with a mechanical axis of 0° ± 3°) and an outlier group of 106 knees (with a mechanical axis of beyond 0° ± 3°). Results: At the time of the latest follow-up, forty-five (15.4%) of the 292 implants in the mechanically aligned group had been revised for any reason, compared with fourteen (13%) of the 106 implants in the outlier group (p = 0.88); twenty-seven (9.2%) of the 292 implants in the mechanically aligned group had been revised because of aseptic loosening, mechanical failure, wear, or patellar problems, compared with eight (7.5%) of the 106 implants in the outlier group (p = 0.88); and seventeen (5.8%) of the 292 implants in the mechanically aligned group had been revised because of aseptic loosening, mechanical failure, or wear, compared with four (3.8%) of the 106 implants in the outlier group (p = 0.49). Conclusions: A postoperative mechanical axis of 0° ± 3° did not improve the fifteen-year implant survival rate following these 398 modern total knee arthroplasties. We believe that describing alignment as a dichotomous variable (aligned versus malaligned) on the basis of a mechanical axis goal of 0° ± 3° is of little practical value for predicting the durability of modern total knee arthroplasty implants. Level of Evidence: Therapeutic Level III. See Instructions to Authors for a complete description of levels of evidence.
AB - Background: One long-held tenet of total knee arthroplasty is that implant durability is maximized when postoperative limb alignment is corrected to 0° ± 3° relative to the mechanical axis. Recently, substantial health-care resources have been devoted to computer navigation systems that allow surgeons to more often achieve that alignment. We hypothesized that a postoperative mechanical axis of 0° ± 3° would result in better long-term survival of total knee arthroplasty implants as compared with that in a group of outliers. Methods: Clinical and radiographic data were reviewed retrospectively to determine the fifteen-year Kaplan-Meier survival rate following 398 primary total knee arthroplasties performed with cement in 280 patients from 1985 to 1990. Preoperatively, most knees were in varus mechanical alignment (mean and standard deviation, 6° ± 8.8° of varus [range, 30° of varus to 22° of valgus]), whereas postoperatively most knees were corrected to neutral (mean and standard deviation, 0° ± 2.8° [range, 8° of varus to 9° of valgus]). Postoperatively, we defined a mechanically aligned group of 292 knees (with a mechanical axis of 0° ± 3°) and an outlier group of 106 knees (with a mechanical axis of beyond 0° ± 3°). Results: At the time of the latest follow-up, forty-five (15.4%) of the 292 implants in the mechanically aligned group had been revised for any reason, compared with fourteen (13%) of the 106 implants in the outlier group (p = 0.88); twenty-seven (9.2%) of the 292 implants in the mechanically aligned group had been revised because of aseptic loosening, mechanical failure, wear, or patellar problems, compared with eight (7.5%) of the 106 implants in the outlier group (p = 0.88); and seventeen (5.8%) of the 292 implants in the mechanically aligned group had been revised because of aseptic loosening, mechanical failure, or wear, compared with four (3.8%) of the 106 implants in the outlier group (p = 0.49). Conclusions: A postoperative mechanical axis of 0° ± 3° did not improve the fifteen-year implant survival rate following these 398 modern total knee arthroplasties. We believe that describing alignment as a dichotomous variable (aligned versus malaligned) on the basis of a mechanical axis goal of 0° ± 3° is of little practical value for predicting the durability of modern total knee arthroplasty implants. Level of Evidence: Therapeutic Level III. See Instructions to Authors for a complete description of levels of evidence.
UR - http://www.scopus.com/inward/record.url?scp=77956999796&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956999796&partnerID=8YFLogxK
U2 - 10.2106/JBJS.I.01398
DO - 10.2106/JBJS.I.01398
M3 - Article
C2 - 20844155
AN - SCOPUS:77956999796
SN - 0021-9355
VL - 92
SP - 2143
EP - 2149
JO - Journal of Bone and Joint Surgery
JF - Journal of Bone and Joint Surgery
IS - 12
ER -