Effect of endogenous natriuretic peptide system on ventricular and coronary function in failing heart

Research output: Contribution to journalArticle

Abstract

Ventricular concentrations of atrial, brain (BNP) and C-type natriuretic peptide are enhanced in congestive heart failure (CHF). Natriuretic peptide receptors are present on ventricular myocytes and stimulate guanosine 3',5'- cyclic monophosphate (cGMP) production. cGMP has been demonstrated to affect myocyte function in vitro. Thus we hypothesized that the intracardiac natriuretic peptide system may modulate myocardial and coronary function in CHF. To test this hypothesis, the effects of an intracoronary infusion of the natriuretic peptide receptor antagonist HS-142-1 on ventricular and coronary function were examined in anesthetized dogs with chronic CHF. To determine whether receptor stimulation had contrasting effects to those of receptor blockade, intracoronary BNP was infused in anesthetized norma] and CHF dogs. Low-dose HS-142-1 delayed and slowed left ventricular (LV) relaxation and decreased coronary blood flow without changes in LV pressures. Higher doses further impaired LV relaxation without further decreases in coronary blood flow. In normal and CHF dogs, exogenous BNP produced the opposite effect with a quicker onset and faster rate of LV relaxation without effects on LV pressures or coronary blood flow. The endogenous natriuretic peptide system has an autocrine-paracrine role to modulate LV and coronary vascular function in CHF.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume273
Issue number5 42-5
StatePublished - 1997

Fingerprint

Natriuretic Peptides
Ventricular Function
Heart Failure
Peptide Receptors
Ventricular Pressure
Dogs
Muscle Cells
C-Type Natriuretic Peptide
Cyclic GMP
Blood Vessels
Brain

Keywords

  • Coronary circulation
  • Guanosine 3',5'-cyclic monophosphate
  • Heart failure
  • Ventricular function

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

@article{22a2f613d3e640cea6a9c3f5c58b45a5,
title = "Effect of endogenous natriuretic peptide system on ventricular and coronary function in failing heart",
abstract = "Ventricular concentrations of atrial, brain (BNP) and C-type natriuretic peptide are enhanced in congestive heart failure (CHF). Natriuretic peptide receptors are present on ventricular myocytes and stimulate guanosine 3',5'- cyclic monophosphate (cGMP) production. cGMP has been demonstrated to affect myocyte function in vitro. Thus we hypothesized that the intracardiac natriuretic peptide system may modulate myocardial and coronary function in CHF. To test this hypothesis, the effects of an intracoronary infusion of the natriuretic peptide receptor antagonist HS-142-1 on ventricular and coronary function were examined in anesthetized dogs with chronic CHF. To determine whether receptor stimulation had contrasting effects to those of receptor blockade, intracoronary BNP was infused in anesthetized norma] and CHF dogs. Low-dose HS-142-1 delayed and slowed left ventricular (LV) relaxation and decreased coronary blood flow without changes in LV pressures. Higher doses further impaired LV relaxation without further decreases in coronary blood flow. In normal and CHF dogs, exogenous BNP produced the opposite effect with a quicker onset and faster rate of LV relaxation without effects on LV pressures or coronary blood flow. The endogenous natriuretic peptide system has an autocrine-paracrine role to modulate LV and coronary vascular function in CHF.",
keywords = "Coronary circulation, Guanosine 3',5'-cyclic monophosphate, Heart failure, Ventricular function",
author = "Kazuhiro Yamamoto and Burnett, {John C Jr.} and Redfield, {Margaret May}",
year = "1997",
language = "English (US)",
volume = "273",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "5 42-5",

}

TY - JOUR

T1 - Effect of endogenous natriuretic peptide system on ventricular and coronary function in failing heart

AU - Yamamoto, Kazuhiro

AU - Burnett, John C Jr.

AU - Redfield, Margaret May

PY - 1997

Y1 - 1997

N2 - Ventricular concentrations of atrial, brain (BNP) and C-type natriuretic peptide are enhanced in congestive heart failure (CHF). Natriuretic peptide receptors are present on ventricular myocytes and stimulate guanosine 3',5'- cyclic monophosphate (cGMP) production. cGMP has been demonstrated to affect myocyte function in vitro. Thus we hypothesized that the intracardiac natriuretic peptide system may modulate myocardial and coronary function in CHF. To test this hypothesis, the effects of an intracoronary infusion of the natriuretic peptide receptor antagonist HS-142-1 on ventricular and coronary function were examined in anesthetized dogs with chronic CHF. To determine whether receptor stimulation had contrasting effects to those of receptor blockade, intracoronary BNP was infused in anesthetized norma] and CHF dogs. Low-dose HS-142-1 delayed and slowed left ventricular (LV) relaxation and decreased coronary blood flow without changes in LV pressures. Higher doses further impaired LV relaxation without further decreases in coronary blood flow. In normal and CHF dogs, exogenous BNP produced the opposite effect with a quicker onset and faster rate of LV relaxation without effects on LV pressures or coronary blood flow. The endogenous natriuretic peptide system has an autocrine-paracrine role to modulate LV and coronary vascular function in CHF.

AB - Ventricular concentrations of atrial, brain (BNP) and C-type natriuretic peptide are enhanced in congestive heart failure (CHF). Natriuretic peptide receptors are present on ventricular myocytes and stimulate guanosine 3',5'- cyclic monophosphate (cGMP) production. cGMP has been demonstrated to affect myocyte function in vitro. Thus we hypothesized that the intracardiac natriuretic peptide system may modulate myocardial and coronary function in CHF. To test this hypothesis, the effects of an intracoronary infusion of the natriuretic peptide receptor antagonist HS-142-1 on ventricular and coronary function were examined in anesthetized dogs with chronic CHF. To determine whether receptor stimulation had contrasting effects to those of receptor blockade, intracoronary BNP was infused in anesthetized norma] and CHF dogs. Low-dose HS-142-1 delayed and slowed left ventricular (LV) relaxation and decreased coronary blood flow without changes in LV pressures. Higher doses further impaired LV relaxation without further decreases in coronary blood flow. In normal and CHF dogs, exogenous BNP produced the opposite effect with a quicker onset and faster rate of LV relaxation without effects on LV pressures or coronary blood flow. The endogenous natriuretic peptide system has an autocrine-paracrine role to modulate LV and coronary vascular function in CHF.

KW - Coronary circulation

KW - Guanosine 3',5'-cyclic monophosphate

KW - Heart failure

KW - Ventricular function

UR - http://www.scopus.com/inward/record.url?scp=0030709302&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030709302&partnerID=8YFLogxK

M3 - Article

C2 - 9374778

VL - 273

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 5 42-5

ER -