Dynamic imaging of ictal rhythmic activity using dense-array EEG

Lin Yang, Christopher Wilke, Benjamin Brinkmann, Gregory A. Worrell, Bin He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electroencephalogram (EEG) is an important component of the pre-surgical evaluation in the treatment of medically intractable epilepsy. However, clinical EEG uses 19 to 32 electrodes that significantly limits its localization ability. Recent development of dense-array recording techniques has suggested that increased spatial sampling rate improves the accuracy of source localization. In the current study, we proposed a 76-channel EEG system for the long-term monitoring of epilepsy patients, and proposed a dynamic seizure imaging (DSI) technique to image the ictal rhythmic activity that may evolve through time, space and frequency. We tested the system in a cohort of 8 patients and our results show that the DSI estimated the seizure activity in good correlation with intracranial recordings, successful surgery outcomes and other clinical evidence. The proposed dense-array recording and DSI imaging approach enable a non-invasive but quantitative imaging of continuous seizure activity. The results suggest that DSI may potentially be useful to assist the pre-surgical evaluation in patients with intractable epilepsy.

Original languageEnglish (US)
Title of host publication33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Pages8271-8274
Number of pages4
DOIs
StatePublished - 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Country/TerritoryUnited States
CityBoston, MA
Period8/30/119/3/11

Keywords

  • Dense-array EEG
  • Dynamic seizure imaging (DSI)
  • Epilepsy
  • Pre-surgical planning

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Dynamic imaging of ictal rhythmic activity using dense-array EEG'. Together they form a unique fingerprint.

Cite this