Dynamic control of tumor vasculature improves antitumor responses in a regional model of melanoma

Emmanuel M. Gabriel, Minhyung Kim, Daniel T. Fisher, Colin Powers, Kristopher Attwood, Sanjay P. Bagaria, Keith L. Knutson, Joseph J. Skitzki

Research output: Contribution to journalArticlepeer-review

Abstract

Despite advances in therapy for melanoma, heterogeneous responses with limited durability represent a major gap in treatment outcomes. The purpose of this study was to determine whether alteration in tumor blood flow could augment drug delivery and improve antitumor responses in a regional model of melanoma. This approach to altering tumor blood flow was termed “dynamic control.” Dynamic control of tumor vessels in C57BL/6 mice bearing B16 melanoma was performed using volume expansion (saline bolus) followed by phenylephrine. Intravital microscopy (IVM) was used to observe changes directly in real time. Our approach restored blood flow in non-functional tumor vessels. It also resulted in increased chemotherapy (melphalan) activity, as measured by formation of DNA adducts. The combination of dynamic control and melphalan resulted in superior outcomes compared to melphalan alone (median time to event 40.0 vs 25.0 days, respectively, p = 0.041). Moreover, 25% (3/12) of the mice treated with the combination approach showed complete tumor response. Importantly, dynamic control plus melphalan did not result in increased adverse events. In summary, we showed that dynamic control was feasible, directly observable, and augmented antitumor responses in a regional model of melanoma. Early clinical trials to determine the translational feasibility of dynamic control are ongoing.

Original languageEnglish (US)
Article number13245
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Dynamic control of tumor vasculature improves antitumor responses in a regional model of melanoma'. Together they form a unique fingerprint.

Cite this