Dopamine- and cyclic AMP-regulated phosphoprotein-immunoreactive neurons activated by acute stress are innervated by fiber terminals immunopositive for pituitary adenylate cyclase-activating polypeptide in the extended amygdala in the rat

Tamás Kozicz, Akira Arimura

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

The bed nuclei of the stria terminalis (BST) and the central nucleus of the amygdala are highly heterogeneous structures, which form one functional unit, the so-called extended amygdala. Several studies described increased c-fos expression following acute stress in this brain area, confirming its central role in the modulation/regulation of stress responses. The oval nucleus of the BST and the central amygdala exhibit a dense network of pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive (ir) fiber terminals. In addition, several dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32)-immunoreactive neurons were also observed here. Because the extended amygdala plays an important role in the central autonomic regulation during stress and the distribution of PACAP-ir and that of DARPP-32-ir nervous structures overlap, the aims of this study were to investigate the possible activation of DARPP-32-ir neurons following acute systemic stress and to demonstrate synaptic interactions between DARPP-32-ir neurons and fiber terminals immunopositive for PACAP. In summary, this study provided morphological evidence that acute stress resulted in the activation of DARPP-32 neurons, which were innervated by PACAP-ir neuronal structures in the extended amygdala. Furthermore, interaction between neuropeptides/neurotransmitters and phosphoproteins was also demonstrated.

Original languageEnglish (US)
Pages (from-to)63-70
Number of pages8
JournalRegulatory Peptides
Volume109
Issue number1-3
DOIs
StatePublished - Nov 15 2002

    Fingerprint

Keywords

  • Fos immunoreactivity
  • Hyperosmotic stress
  • Immunohistochemistry
  • Phosphoproteins

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Endocrinology
  • Clinical Biochemistry
  • Cellular and Molecular Neuroscience

Cite this