Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification

Ali Khawaja, Brian J. Bartholmai, Srinivasan Rajagopalan, Ronald A. Karwoski, Cyril Varghese, Fabien Maldonado, Tobias Peikert

Research output: Contribution to journalReview articlepeer-review

Abstract

Despite multiple recent advances, the diagnosis and management of lung cancer remain challenging and it continues to be the deadliest malignancy. In 2011, the National Lung Screening Trial (NLST) reported 20% reduction in lung cancer related mortality using annual low dose chest computed tomography (CT). These results led to the approval and nationwide establishment of lung cancer CT-based lung cancer screening programs. These findings have been further validated by the recently published Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) and Multicentric Italian Lung Detection (MILD) trials, the latter showing benefit of screening even beyond the 5 years. However, the implementation of lung cancer screening has been impeded by several challenges, including the differentiation between benign and malignant nodules, the large number of false positive studies and the detection of indolent, potentially clinically insignificant lung cancers (overdiagnosis). Hence, the development of non-invasive strategies to accurately classify and risk stratify screen-detected pulmonary nodules in order to individualize clinical management remains a high priority area of research. Radiomics is a recently coined term which refers to the process of imaging feature extraction and quantitative analysis of clinical diagnostic images to characterize the nodule phenotype beyond what is possible with conventional radiologist assessment. Even though it is still in early phase, several studies have already demonstrated that radiomics approaches are potentially useful for lung nodule classification, risk stratification, individualized management and prediction of overall prognosis. The goal of this review is to summarize the current literature regarding the radiomics of screen-detected lung nodules, highlight potential challenges and discuss its clinical application along with future goals and challenges.

Original languageEnglish (US)
Pages (from-to)3303-3316
Number of pages14
JournalJournal of Thoracic Disease
Volume12
Issue number6
DOIs
StatePublished - Jun 1 2020

Keywords

  • Imaging biomarker
  • Lung cancer
  • Pulmonary nodule
  • Radiomics
  • Risk stratification

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine

Fingerprint Dive into the research topics of 'Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification'. Together they form a unique fingerprint.

Cite this