TY - JOUR
T1 - Direct transcriptional regulation of RelB by 1alpha,25-dihydroxyvitamin D3 and its analogs
T2 - physiologic and therapeutic implications for dendritic cell function.
AU - Dong, Xiangyang
AU - Craig, Theodore
AU - Xing, Nianzeng
AU - Bachman, Lori A.
AU - Paya, Carlos V.
AU - Weih, Falk
AU - McKean, David J.
AU - Kumar, Rajiv
AU - Griffin, Matthew D.
PY - 2003/12/5
Y1 - 2003/12/5
N2 - The nuclear factor-kappaB (NF-kappaB) protein RelB plays a unique role in dendritic cell (DC) function and, as such, is an important regulator of antigen presentation and immune regulation. In this study, inhibition of RelB expression in DCs exposed to an analog of the active form of vitamin D3 (1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3)) was observed and shown to be mediated by the vitamin D receptor (VDR). Potential vitamin D response elements were identified within promoter regions of human and mouse relB genes. In gel shift experiments, these motifs specifically bound VDR.retinoid X receptor-alpha complexes. Reporter assays confirmed that transcriptional activity of human and mouse relB promoters was inhibited by 1alpha,25-(OH)2D3 agonists in a DC-derived cell line. The inhibition was abolished by mutagenesis of the putative vitamin D response elements and was enhanced by overexpression of VDR. Mutagenesis of NF-kappaB response elements within the relB promoter did not affect the magnitude of 1alpha,25-(OH)2D3 analog-mediated inhibition, ruling out an indirect effect on NF-kappaB signaling. Glucocorticoid caused additional inhibition of relB promoter activity when combined with the 1alpha,25-(OH)2D3 analog. This effect was dependent on the integrity of the NF-kappaB response elements, suggesting separate regulatory mechanisms for the two steroid pathways on this promoter. We conclude that relB is a direct target for 1alpha,25-(OH)2D3-mediated negative transcriptional regulation via binding of VDR.retinoid X receptor-alpha to discrete DNA motifs. This mechanism has important implications for the inhibitory effect of 1alpha,25-(OH)2D3 on DC maturation and for the potential immunotherapeutic use of 1alpha,25-(OH)2D3 analogs alone or combined with other agents.
AB - The nuclear factor-kappaB (NF-kappaB) protein RelB plays a unique role in dendritic cell (DC) function and, as such, is an important regulator of antigen presentation and immune regulation. In this study, inhibition of RelB expression in DCs exposed to an analog of the active form of vitamin D3 (1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3)) was observed and shown to be mediated by the vitamin D receptor (VDR). Potential vitamin D response elements were identified within promoter regions of human and mouse relB genes. In gel shift experiments, these motifs specifically bound VDR.retinoid X receptor-alpha complexes. Reporter assays confirmed that transcriptional activity of human and mouse relB promoters was inhibited by 1alpha,25-(OH)2D3 agonists in a DC-derived cell line. The inhibition was abolished by mutagenesis of the putative vitamin D response elements and was enhanced by overexpression of VDR. Mutagenesis of NF-kappaB response elements within the relB promoter did not affect the magnitude of 1alpha,25-(OH)2D3 analog-mediated inhibition, ruling out an indirect effect on NF-kappaB signaling. Glucocorticoid caused additional inhibition of relB promoter activity when combined with the 1alpha,25-(OH)2D3 analog. This effect was dependent on the integrity of the NF-kappaB response elements, suggesting separate regulatory mechanisms for the two steroid pathways on this promoter. We conclude that relB is a direct target for 1alpha,25-(OH)2D3-mediated negative transcriptional regulation via binding of VDR.retinoid X receptor-alpha to discrete DNA motifs. This mechanism has important implications for the inhibitory effect of 1alpha,25-(OH)2D3 on DC maturation and for the potential immunotherapeutic use of 1alpha,25-(OH)2D3 analogs alone or combined with other agents.
UR - http://www.scopus.com/inward/record.url?scp=1542676905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542676905&partnerID=8YFLogxK
U2 - 10.1074/jbc.M308448200
DO - 10.1074/jbc.M308448200
M3 - Article
C2 - 14507914
AN - SCOPUS:1542676905
SN - 0021-9258
VL - 278
SP - 49378
EP - 49385
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 49
ER -