Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes

Ahad N K Yusufi, Jingfei Cheng, Michael A. Thompson, John C Jr. Burnett, Joseph Peter Grande

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The release of Ca2+ from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca2+ signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca2+ release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca2+ release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca2+ release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca2+. cADPR, NAADP, and IP3 induced Ca2+ release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca2+ release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca2+ release. Nifedipine, an L-type Ca2+ channel blocker, inhibited NAADP elicited Ca2+ release, but had no effect on IP3- or cADPR-mediated Ca2+ release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca2+ release, but had no effect on IP3- or NAADP-induced Ca2+ release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca2+-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca2+ release. IP3-, cADPR-, and NAADP-induced intracellular Ca2+ release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension nd/or atherogenesis.

Original languageEnglish (US)
Pages (from-to)36-44
Number of pages9
JournalExperimental Biology and Medicine
Volume227
Issue number1
StatePublished - Jan 2002

Fingerprint

Cyclic ADP-Ribose
Microsomes
Vascular Smooth Muscle
Smooth Muscle Myocytes
Muscle
Cells
Ryanodine Receptor Calcium Release Channel
Ruthenium Red
Ryanodine
Sea Urchins
Nifedipine
Phenol
Caffeine
Gene expression
Eggs
Blood Vessels
Heparin
NAADP
Rats
Atherosclerosis

Keywords

  • Calcium (Ca)
  • Cyclic ADP-ribose (cADPR)
  • Inositol-1,4,5-trisphosphate (IP)
  • Nicotinic acid-adenine dinucleotide phosphate (NAADP)
  • Vascular smooth muscle

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes. / Yusufi, Ahad N K; Cheng, Jingfei; Thompson, Michael A.; Burnett, John C Jr.; Grande, Joseph Peter.

In: Experimental Biology and Medicine, Vol. 227, No. 1, 01.2002, p. 36-44.

Research output: Contribution to journalArticle

@article{8885d698a25c483280e348bcc38358f9,
title = "Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes",
abstract = "The release of Ca2+ from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca2+ signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca2+ release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca2+ release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca2+ release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca2+. cADPR, NAADP, and IP3 induced Ca2+ release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca2+ release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca2+ release. Nifedipine, an L-type Ca2+ channel blocker, inhibited NAADP elicited Ca2+ release, but had no effect on IP3- or cADPR-mediated Ca2+ release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca2+ release, but had no effect on IP3- or NAADP-induced Ca2+ release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca2+-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca2+ release. IP3-, cADPR-, and NAADP-induced intracellular Ca2+ release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension nd/or atherogenesis.",
keywords = "Calcium (Ca), Cyclic ADP-ribose (cADPR), Inositol-1,4,5-trisphosphate (IP), Nicotinic acid-adenine dinucleotide phosphate (NAADP), Vascular smooth muscle",
author = "Yusufi, {Ahad N K} and Jingfei Cheng and Thompson, {Michael A.} and Burnett, {John C Jr.} and Grande, {Joseph Peter}",
year = "2002",
month = "1",
language = "English (US)",
volume = "227",
pages = "36--44",
journal = "Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)",
issn = "1535-3702",
publisher = "SAGE Publications Ltd",
number = "1",

}

TY - JOUR

T1 - Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes

AU - Yusufi, Ahad N K

AU - Cheng, Jingfei

AU - Thompson, Michael A.

AU - Burnett, John C Jr.

AU - Grande, Joseph Peter

PY - 2002/1

Y1 - 2002/1

N2 - The release of Ca2+ from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca2+ signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca2+ release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca2+ release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca2+ release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca2+. cADPR, NAADP, and IP3 induced Ca2+ release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca2+ release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca2+ release. Nifedipine, an L-type Ca2+ channel blocker, inhibited NAADP elicited Ca2+ release, but had no effect on IP3- or cADPR-mediated Ca2+ release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca2+ release, but had no effect on IP3- or NAADP-induced Ca2+ release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca2+-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca2+ release. IP3-, cADPR-, and NAADP-induced intracellular Ca2+ release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension nd/or atherogenesis.

AB - The release of Ca2+ from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca2+ signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca2+ release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca2+ release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca2+ release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca2+. cADPR, NAADP, and IP3 induced Ca2+ release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca2+ release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca2+ release. Nifedipine, an L-type Ca2+ channel blocker, inhibited NAADP elicited Ca2+ release, but had no effect on IP3- or cADPR-mediated Ca2+ release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca2+ release, but had no effect on IP3- or NAADP-induced Ca2+ release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca2+-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca2+ release. IP3-, cADPR-, and NAADP-induced intracellular Ca2+ release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension nd/or atherogenesis.

KW - Calcium (Ca)

KW - Cyclic ADP-ribose (cADPR)

KW - Inositol-1,4,5-trisphosphate (IP)

KW - Nicotinic acid-adenine dinucleotide phosphate (NAADP)

KW - Vascular smooth muscle

UR - http://www.scopus.com/inward/record.url?scp=0036376768&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036376768&partnerID=8YFLogxK

M3 - Article

C2 - 11788782

AN - SCOPUS:0036376768

VL - 227

SP - 36

EP - 44

JO - Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)

JF - Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)

SN - 1535-3702

IS - 1

ER -