Differential activation of mTOR signaling by contractile activity in skeletal muscle

Jascha D. Parkington, Adam P. Siebert, Nathan K LeBrasseur, Roger A. Fielding

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin (mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior (TA), and soleus (Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 ± 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 ± 0.6-fold) and increased in TA (4.6 ± 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla (0.4 ± 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 ± 0.4-fold vs. 2.4 ± 0.3-fold, respectively, P < 0.01). Akt/ PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume285
Issue number5 54-5
StatePublished - Nov 2003
Externally publishedYes

Fingerprint

Sirolimus
Skeletal Muscle
Phosphorylation
Electric Stimulation
Hypertrophy
Phosphatidylinositol 3-Kinase
Ribosomal Protein S6 Kinases
Muscles
Myosin Heavy Chains
Sciatic Nerve
Hindlimb
Protein Isoforms
Extremities

Keywords

  • Akt
  • Exercise
  • Hypertrophy
  • Ribosomal protein S6 kinase

ASJC Scopus subject areas

  • Physiology

Cite this

Differential activation of mTOR signaling by contractile activity in skeletal muscle. / Parkington, Jascha D.; Siebert, Adam P.; LeBrasseur, Nathan K; Fielding, Roger A.

In: American Journal of Physiology - Regulatory Integrative and Comparative Physiology, Vol. 285, No. 5 54-5, 11.2003.

Research output: Contribution to journalArticle

@article{dc352f7eba104665a25800a5d791f885,
title = "Differential activation of mTOR signaling by contractile activity in skeletal muscle",
abstract = "The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin (mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior (TA), and soleus (Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 ± 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 ± 0.6-fold) and increased in TA (4.6 ± 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla (0.4 ± 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 ± 0.4-fold vs. 2.4 ± 0.3-fold, respectively, P < 0.01). Akt/ PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.",
keywords = "Akt, Exercise, Hypertrophy, Ribosomal protein S6 kinase",
author = "Parkington, {Jascha D.} and Siebert, {Adam P.} and LeBrasseur, {Nathan K} and Fielding, {Roger A.}",
year = "2003",
month = "11",
language = "English (US)",
volume = "285",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "5 54-5",

}

TY - JOUR

T1 - Differential activation of mTOR signaling by contractile activity in skeletal muscle

AU - Parkington, Jascha D.

AU - Siebert, Adam P.

AU - LeBrasseur, Nathan K

AU - Fielding, Roger A.

PY - 2003/11

Y1 - 2003/11

N2 - The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin (mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior (TA), and soleus (Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 ± 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 ± 0.6-fold) and increased in TA (4.6 ± 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla (0.4 ± 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 ± 0.4-fold vs. 2.4 ± 0.3-fold, respectively, P < 0.01). Akt/ PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.

AB - The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin (mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior (TA), and soleus (Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 ± 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 ± 0.6-fold) and increased in TA (4.6 ± 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla (0.4 ± 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 ± 0.4-fold vs. 2.4 ± 0.3-fold, respectively, P < 0.01). Akt/ PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.

KW - Akt

KW - Exercise

KW - Hypertrophy

KW - Ribosomal protein S6 kinase

UR - http://www.scopus.com/inward/record.url?scp=0142031639&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142031639&partnerID=8YFLogxK

M3 - Article

C2 - 12881204

AN - SCOPUS:0142031639

VL - 285

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 5 54-5

ER -