Diethyldithiocarbamate S-methylation: Evidence for catalysis by human liver thiol methyltransferase and thiopurine methyltransferase

T. A. Glauser, A. N. Nelson, D. E. Zembower, J. J. Lipsky, R. M. Weinshilboum

Research output: Contribution to journalArticle

26 Scopus citations

Abstract

Disulfiram is used in the treatment of alcoholism to inhibit the enzyme aldehyde dehydrogenase. Disulfiram is rapidly reduced in vivo to form diethyldithiocarbamate (DDC), and DDC can undergo methyl conjugation to form S-methyl-DDC. Human tissues contain two separate genetically regulated enzymes that can catalyze thiol S-methylation. Thiol methyltransferase (TMT) is a microsomal enzyme that preferentially catalyzes the S-methylation of aliphatic sulfhydryl compounds, whereas thiopurine methyltransferase (TPMT) is a cytoplasmic enzyme that preferentially catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds. Our experiments were performed to determine whether human liver microsomal and/or cytosolic preparations could catalyze the S-methylation of DDC, and, if so, to determine whether TMT or TPMT might be the enzymes involved. We found that both human liver microsomes and cytosol could catalyze DDC S-methylation. The microsomal activity displayed biphasic substrate kinetics, with apparent K(m) values for DDC of 7.9 and 1500 μM for the high- and low-affinity activities, respectively. The high-affinity activity had an apparent K(m) value for S- adenosyl-L-methionine, the methyl donor for the reaction, of 5.8 μM. The thermal inactivation profile and response to methyltransferase inhibitors of the high-affinity microsomal DDC S-methyltransferase activity were similar to those of human liver microsomal TMT. In addition, TMT activity and the activity catalyzing the S-methylation of DDC were highly correlated in 19 individual liver samples (r(s) = 0.956; P < .0001). Hepatic cytosolic DDC S- methyltransferase activity had an apparent K(m) value for DDC of 95 μM. The cytosolic enzyme which catalyzed DDC S-methylation and TPMT activity had similar thermal inactivation profiles, similar patterns of response to methyltransferase inhibitors and the two activities coeluted during ion exchange chromatography. Furthermore, the activities of TPMT and cytosolic DDC S-methyltransferase were highly correlated in 20 individual liver samples (r(s) = 0.963; P < .0001). These results were compatible with the conclusion that both TMT and TPMT could catalyze the S-methylation of DDC in the human liver. Because the activities of both TMT and TPMT are controlled by inheritance, our observations raise the possibility of pharmacogenetic variation in the biotransformation and therapeutic effect of DDC in humans.

Original languageEnglish (US)
Pages (from-to)23-32
Number of pages10
JournalJournal of Pharmacology and Experimental Therapeutics
Volume266
Issue number1
StatePublished - 1993

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint Dive into the research topics of 'Diethyldithiocarbamate S-methylation: Evidence for catalysis by human liver thiol methyltransferase and thiopurine methyltransferase'. Together they form a unique fingerprint.

  • Cite this