Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells

Andrea Rojas, Rodrigo Mardones, Kenneth Pritzker, Andre J. van Wijnen, Mario A. Galindo, Facundo Las Heras

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The in vitro process of chondrogenic differentiation of mesenchymal stem cells (MSCs) induces a pre-apoptotic hypertrophic phenotype, guided by the active status of the WNT/β‑catenin pathway. To achieve a stable chondrocyte phenotype for cartilage tissue engineering, it is necessary to gain a better understanding of specific genes that regulate the cartilage tissue phenotype. RNA sequencing (RNA-seq) analysis of tissue samples from bone, cartilage, growth plate and muscle show that Dickkopf-1 (DKK1), a natural WNT canonical signaling inhibitor, is expressed in cartilage tissue. This observation reinforces the concept that inhibition of the WNT/β‑catenin pathway is critical for preventing avoid chondrocyte hypertrophy in vitro. We used two doses of DKK1 in a pellet cell culture system to inhibit the terminal differentiation of chondrocytes derived from bone marrow mesenchymal stem cells (MSCs). Bone marrow MSCs were cultured in chondrogenic induction medium with 50 and 200 ng/ml of DKK1 for 21 days. The highest doses of DKK1 reduce β‑catenin expression and nuclear localization at day 21, concomitant with reduced expression and activity of hypertrophy markers collagen type X (COL10A1) and alkaline phosphatase (ALPL), thus decreasing the pre-hypertrophic chondrocyte population. Furthermore, DKK1 stimulated expression of collagen type II (COL2A1) and glycosaminoglycans (GAGs), which represent healthy articular cartilage markers. We conclude that exogenous DKK1 impedes chondrocyte progression into a prehypertrophic stage and stimulates expression of healthy articular cartilage markers by blocking the WNT/β‑catenin pathway. Hence, DKK1 may promote a mature healthy articular cartilage phenotype and facilitate cartilage tissue engineering for joint repair.

Original languageEnglish (US)
Pages (from-to)228-237
Number of pages10
JournalGene
Volume687
DOIs
StatePublished - Mar 1 2019

Keywords

  • Arthritis
  • Chondrocytes
  • Hypertrophy
  • Stem cells
  • WNT/β‑catenin pathway

ASJC Scopus subject areas

  • Genetics

Fingerprint Dive into the research topics of 'Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells'. Together they form a unique fingerprint.

Cite this