Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records

Nansu Zong, Andrew Wen, Daniel J. Stone, Deepak K. Sharma, Chen Wang, Yue Yu, Hongfang Liu, Qian Shi, Guoqian Jiang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

PURPOSE The Fast Healthcare Interoperability Resources (FHIR) is emerging as a next-generation standards framework developed by HL7 for exchanging electronic health care data. The modeling capability of FHIR in standardizing cancer data has been gaining increasing attention by the cancer research informatics community. However, few studies have been conducted to examine the capability of FHIR in electronic data capture (EDC) applications for effective cancer clinical trials. The objective of this study was to design, develop, and evaluate an FHIR-based method that enables the automation of the case report forms (CRFs) population for cancer clinical trials using real-world electronic health records (EHRs). MATERIALS AND METHODS We developed an FHIR-based computational pipeline of EDC with a case study for modeling colorectal cancer trials. We first leveraged an existing FHIR-based cancer profile to represent EHR data of patients with colorectal cancer, and then we used the FHIR Questionnaire and QuestionnaireResponse resources to represent the CRFs and their data population. To test the accuracy of and overall quality of the computational pipeline, we used synoptic reports of 287 Mayo Clinic patients with colorectal cancer from 2013 to 2019 with standard measures of precision, recall, and F1 score. RESULTS Using the computational pipeline, a total of 1,037 synoptic reports were successfully converted as the instances of the FHIR-based cancer profile. The average accuracy for converting all data elements (excluding tumor perforation) of the cancer profile was 0.99, using 200 randomly selected records. The average F1 score for populating nine questions of the CRFs in a real-world colorectal cancer trial was 0.95, using 100 randomly selected records. CONCLUSION We demonstrated that it is feasible to populate CRFs with EHR data in an automated manner with satisfactory performance. The outcome of the study provides helpful insight into future directions in implementing FHIR-based EDC applications for modern cancer clinical trials.

Original languageEnglish (US)
Pages (from-to)201-209
Number of pages9
JournalJCO Clinical Cancer Informatics
Volume3
DOIs
StatePublished - 2019

ASJC Scopus subject areas

  • Cancer Research
  • Oncology
  • Health Informatics
  • Medicine(all)

Fingerprint Dive into the research topics of 'Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records'. Together they form a unique fingerprint.

Cite this