Delayed onset of paralysis and slowed tumor growth following in situ placement of recombinant human bone morphogenetic protein 2 within spine tumors in a rat model of metastatic breast cancer: Presented at the 2011 Spine Section Meeting - Laboratory investigation

Camilo A. Molina, Rachel Sarabia Estrada, Ziya L. Gokaslan, Timothy F. Witham, Ali Bydon, Jean Paul Wolinsky, Daniel M. Sciubba

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Object. Recombinant human bone morphogenetic proteins (rhBMPs) are FDA-approved for specific spinal fusion procedures, but their use is contraindicated in spine tumor resection beds because of an unclear interaction between tumor tissue and such growth factors. Interestingly, a number of studies have suggested that BMPs may slow the growth of adenocarcinomas in vitro, and these lesions represent the majority of bony spine tumors. In this study, the authors hypothesized that rhBMP-2 placed in an intraosseous spine tumor in the rat could suppress tumor and delay the onset of paresis in such animals. Methods. Twenty-six female nude athymic rats were randomized into an experimental group (Group 1) or a positive control group (Group 2). Group 1 (tumor + 15 μg rhBMP-2 sponge, 13 rats) underwent transperitoneal exposure and implantation of breast adenocarcinoma (CRL-1666) into the L-6 spine segment, followed by the implantation of a bovine collagen sponge impregnated with 15 μg of rhBMP-2. Group 2 (tumor + 0.9% NaCl sponge, 13 rats) underwent transperitoneal exposure and tumor implantation in the lumbar spine but no local treatment with rhBMP-2. An additional 8 animals were randomized into 2 negative control groups (Groups 3 and 4). Group 3 (15 μg rhBMP-2 sponge, 4 rats) and Group 4 (0.9% NaCl sponge, 4 rats) underwent transperitoneal exposure of the lumbar spine along with the implantation of rhBMP-2- and saline-impregnated bovine collagen sponges, respectively. Neither of the negative control groups was implanted with tumor. The Basso-Beattie-Bresnahan (BBB) scale was used to monitor daily motor function regression and the time to paresis (BBB score ≤ 7). Results. In comparison with the positive control animals (Group 2), the experimental animals (Group 1) had statistically significant longer mean (25.8 ± 12.2 vs 13 ± 1.4 days, p d 0.001) and median (20 vs 13 days) times to paresis. In addition, the median survival time was significantly longer in the experimental animals (20 vs 13.5 days, p ≤ 0.0001). Histopathological analysis demonstrated bone growth and tumor inhibition in the experimental animals, whereas bone destruction and cord compression were observed in the positive control animals. Neither of the negative control groups (Groups 3 and 4) demonstrated any evidence of neurological deterioration, morbidity, or cord compromise on either gross or histological analysis. Conclusions. This study shows that the local administration of rhBMP-2 (15 μg, 10 μl of 1.5-mg/ml solution) in a rat spine tumor model of breast cancer not only fails to stimulate local tumor growth, but also decreases local tumor growth and delays the onset of paresis in rats. This preclinical experiment is the first to show that the local placement of rhBMP-2 in a spine tumor bed may slow tumor progression and delay associated neurological decline.

Original languageEnglish (US)
Pages (from-to)365-372
Number of pages8
JournalJournal of Neurosurgery: Spine
Volume16
Issue number4
DOIs
StatePublished - Apr 2012
Externally publishedYes

Fingerprint

Paralysis
Spine
Breast Neoplasms
Growth
Porifera
Neoplasms
Paresis
Control Groups
Nude Rats
recombinant human bone morphogenetic protein-2
Breast Implantation
Adenocarcinoma
Collagen
Spinal Fusion
Bone Morphogenetic Proteins
Bone Development
Intercellular Signaling Peptides and Proteins

Keywords

  • Animal model
  • Bone morphogenetic protein 2
  • Metastatic spine disease
  • Oncology
  • Recombinant human bone morphogenetic protein
  • Spine tumor

ASJC Scopus subject areas

  • Clinical Neurology
  • Surgery
  • Neurology

Cite this

@article{72ed1a377f3c45169f22bed185af14eb,
title = "Delayed onset of paralysis and slowed tumor growth following in situ placement of recombinant human bone morphogenetic protein 2 within spine tumors in a rat model of metastatic breast cancer: Presented at the 2011 Spine Section Meeting - Laboratory investigation",
abstract = "Object. Recombinant human bone morphogenetic proteins (rhBMPs) are FDA-approved for specific spinal fusion procedures, but their use is contraindicated in spine tumor resection beds because of an unclear interaction between tumor tissue and such growth factors. Interestingly, a number of studies have suggested that BMPs may slow the growth of adenocarcinomas in vitro, and these lesions represent the majority of bony spine tumors. In this study, the authors hypothesized that rhBMP-2 placed in an intraosseous spine tumor in the rat could suppress tumor and delay the onset of paresis in such animals. Methods. Twenty-six female nude athymic rats were randomized into an experimental group (Group 1) or a positive control group (Group 2). Group 1 (tumor + 15 μg rhBMP-2 sponge, 13 rats) underwent transperitoneal exposure and implantation of breast adenocarcinoma (CRL-1666) into the L-6 spine segment, followed by the implantation of a bovine collagen sponge impregnated with 15 μg of rhBMP-2. Group 2 (tumor + 0.9{\%} NaCl sponge, 13 rats) underwent transperitoneal exposure and tumor implantation in the lumbar spine but no local treatment with rhBMP-2. An additional 8 animals were randomized into 2 negative control groups (Groups 3 and 4). Group 3 (15 μg rhBMP-2 sponge, 4 rats) and Group 4 (0.9{\%} NaCl sponge, 4 rats) underwent transperitoneal exposure of the lumbar spine along with the implantation of rhBMP-2- and saline-impregnated bovine collagen sponges, respectively. Neither of the negative control groups was implanted with tumor. The Basso-Beattie-Bresnahan (BBB) scale was used to monitor daily motor function regression and the time to paresis (BBB score ≤ 7). Results. In comparison with the positive control animals (Group 2), the experimental animals (Group 1) had statistically significant longer mean (25.8 ± 12.2 vs 13 ± 1.4 days, p d 0.001) and median (20 vs 13 days) times to paresis. In addition, the median survival time was significantly longer in the experimental animals (20 vs 13.5 days, p ≤ 0.0001). Histopathological analysis demonstrated bone growth and tumor inhibition in the experimental animals, whereas bone destruction and cord compression were observed in the positive control animals. Neither of the negative control groups (Groups 3 and 4) demonstrated any evidence of neurological deterioration, morbidity, or cord compromise on either gross or histological analysis. Conclusions. This study shows that the local administration of rhBMP-2 (15 μg, 10 μl of 1.5-mg/ml solution) in a rat spine tumor model of breast cancer not only fails to stimulate local tumor growth, but also decreases local tumor growth and delays the onset of paresis in rats. This preclinical experiment is the first to show that the local placement of rhBMP-2 in a spine tumor bed may slow tumor progression and delay associated neurological decline.",
keywords = "Animal model, Bone morphogenetic protein 2, Metastatic spine disease, Oncology, Recombinant human bone morphogenetic protein, Spine tumor",
author = "Molina, {Camilo A.} and {Sarabia Estrada}, Rachel and Gokaslan, {Ziya L.} and Witham, {Timothy F.} and Ali Bydon and Wolinsky, {Jean Paul} and Sciubba, {Daniel M.}",
year = "2012",
month = "4",
doi = "10.3171/2011.12.SPINE11496",
language = "English (US)",
volume = "16",
pages = "365--372",
journal = "Journal of Neurosurgery: Spine",
issn = "1547-5654",
publisher = "American Association of Neurological Surgeons",
number = "4",

}

TY - JOUR

T1 - Delayed onset of paralysis and slowed tumor growth following in situ placement of recombinant human bone morphogenetic protein 2 within spine tumors in a rat model of metastatic breast cancer

T2 - Presented at the 2011 Spine Section Meeting - Laboratory investigation

AU - Molina, Camilo A.

AU - Sarabia Estrada, Rachel

AU - Gokaslan, Ziya L.

AU - Witham, Timothy F.

AU - Bydon, Ali

AU - Wolinsky, Jean Paul

AU - Sciubba, Daniel M.

PY - 2012/4

Y1 - 2012/4

N2 - Object. Recombinant human bone morphogenetic proteins (rhBMPs) are FDA-approved for specific spinal fusion procedures, but their use is contraindicated in spine tumor resection beds because of an unclear interaction between tumor tissue and such growth factors. Interestingly, a number of studies have suggested that BMPs may slow the growth of adenocarcinomas in vitro, and these lesions represent the majority of bony spine tumors. In this study, the authors hypothesized that rhBMP-2 placed in an intraosseous spine tumor in the rat could suppress tumor and delay the onset of paresis in such animals. Methods. Twenty-six female nude athymic rats were randomized into an experimental group (Group 1) or a positive control group (Group 2). Group 1 (tumor + 15 μg rhBMP-2 sponge, 13 rats) underwent transperitoneal exposure and implantation of breast adenocarcinoma (CRL-1666) into the L-6 spine segment, followed by the implantation of a bovine collagen sponge impregnated with 15 μg of rhBMP-2. Group 2 (tumor + 0.9% NaCl sponge, 13 rats) underwent transperitoneal exposure and tumor implantation in the lumbar spine but no local treatment with rhBMP-2. An additional 8 animals were randomized into 2 negative control groups (Groups 3 and 4). Group 3 (15 μg rhBMP-2 sponge, 4 rats) and Group 4 (0.9% NaCl sponge, 4 rats) underwent transperitoneal exposure of the lumbar spine along with the implantation of rhBMP-2- and saline-impregnated bovine collagen sponges, respectively. Neither of the negative control groups was implanted with tumor. The Basso-Beattie-Bresnahan (BBB) scale was used to monitor daily motor function regression and the time to paresis (BBB score ≤ 7). Results. In comparison with the positive control animals (Group 2), the experimental animals (Group 1) had statistically significant longer mean (25.8 ± 12.2 vs 13 ± 1.4 days, p d 0.001) and median (20 vs 13 days) times to paresis. In addition, the median survival time was significantly longer in the experimental animals (20 vs 13.5 days, p ≤ 0.0001). Histopathological analysis demonstrated bone growth and tumor inhibition in the experimental animals, whereas bone destruction and cord compression were observed in the positive control animals. Neither of the negative control groups (Groups 3 and 4) demonstrated any evidence of neurological deterioration, morbidity, or cord compromise on either gross or histological analysis. Conclusions. This study shows that the local administration of rhBMP-2 (15 μg, 10 μl of 1.5-mg/ml solution) in a rat spine tumor model of breast cancer not only fails to stimulate local tumor growth, but also decreases local tumor growth and delays the onset of paresis in rats. This preclinical experiment is the first to show that the local placement of rhBMP-2 in a spine tumor bed may slow tumor progression and delay associated neurological decline.

AB - Object. Recombinant human bone morphogenetic proteins (rhBMPs) are FDA-approved for specific spinal fusion procedures, but their use is contraindicated in spine tumor resection beds because of an unclear interaction between tumor tissue and such growth factors. Interestingly, a number of studies have suggested that BMPs may slow the growth of adenocarcinomas in vitro, and these lesions represent the majority of bony spine tumors. In this study, the authors hypothesized that rhBMP-2 placed in an intraosseous spine tumor in the rat could suppress tumor and delay the onset of paresis in such animals. Methods. Twenty-six female nude athymic rats were randomized into an experimental group (Group 1) or a positive control group (Group 2). Group 1 (tumor + 15 μg rhBMP-2 sponge, 13 rats) underwent transperitoneal exposure and implantation of breast adenocarcinoma (CRL-1666) into the L-6 spine segment, followed by the implantation of a bovine collagen sponge impregnated with 15 μg of rhBMP-2. Group 2 (tumor + 0.9% NaCl sponge, 13 rats) underwent transperitoneal exposure and tumor implantation in the lumbar spine but no local treatment with rhBMP-2. An additional 8 animals were randomized into 2 negative control groups (Groups 3 and 4). Group 3 (15 μg rhBMP-2 sponge, 4 rats) and Group 4 (0.9% NaCl sponge, 4 rats) underwent transperitoneal exposure of the lumbar spine along with the implantation of rhBMP-2- and saline-impregnated bovine collagen sponges, respectively. Neither of the negative control groups was implanted with tumor. The Basso-Beattie-Bresnahan (BBB) scale was used to monitor daily motor function regression and the time to paresis (BBB score ≤ 7). Results. In comparison with the positive control animals (Group 2), the experimental animals (Group 1) had statistically significant longer mean (25.8 ± 12.2 vs 13 ± 1.4 days, p d 0.001) and median (20 vs 13 days) times to paresis. In addition, the median survival time was significantly longer in the experimental animals (20 vs 13.5 days, p ≤ 0.0001). Histopathological analysis demonstrated bone growth and tumor inhibition in the experimental animals, whereas bone destruction and cord compression were observed in the positive control animals. Neither of the negative control groups (Groups 3 and 4) demonstrated any evidence of neurological deterioration, morbidity, or cord compromise on either gross or histological analysis. Conclusions. This study shows that the local administration of rhBMP-2 (15 μg, 10 μl of 1.5-mg/ml solution) in a rat spine tumor model of breast cancer not only fails to stimulate local tumor growth, but also decreases local tumor growth and delays the onset of paresis in rats. This preclinical experiment is the first to show that the local placement of rhBMP-2 in a spine tumor bed may slow tumor progression and delay associated neurological decline.

KW - Animal model

KW - Bone morphogenetic protein 2

KW - Metastatic spine disease

KW - Oncology

KW - Recombinant human bone morphogenetic protein

KW - Spine tumor

UR - http://www.scopus.com/inward/record.url?scp=84859601279&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84859601279&partnerID=8YFLogxK

U2 - 10.3171/2011.12.SPINE11496

DO - 10.3171/2011.12.SPINE11496

M3 - Article

C2 - 22264176

AN - SCOPUS:84859601279

VL - 16

SP - 365

EP - 372

JO - Journal of Neurosurgery: Spine

JF - Journal of Neurosurgery: Spine

SN - 1547-5654

IS - 4

ER -