Deformation-induced injury of alveolar epithelial cells

Effect of strain magnitude and amplitude

Daniel J Tschumperlin, S. S. Margulies

Research output: Contribution to journalArticle

Abstract

The alveolar epithelial lining of the lung undergoes significant increases in surface area at high lung volumes. These deformations may be critical in the development of pulmonary barotrauma. We tested the hypothesis that alveolar epithelial injury would increase both as a function of deformation amplitude, and maximal deformation. Alveolar type II cells from primary culture were seeded onto fibronectin coated silastic membranes and tested after 5 days in culture. Cells were exposed to uniform equi-biaxial deformations in a custom built device, and were subjected to changes in surface area of 12, 25, 37, and 50%, which correspond to lung inflation to ∼ 60, 80, 100, and > 100% of total lung capacity. Cells were also exposed to 0, 12, and 25% changes in surface area superimposed on a tonic deformation of 25%. Cells were continuously cycled for 1 hour at 15 cycles per minute. Alveolar epithelial injury was assessed quantitatively with a fluorescent cell viability assay, and defined as fraction of dead cells relative to total number of cells. Injury increased non-linearly with amplitude and maximum deformation (Figure), confirming our hypothesis. When deformation amplitude was reduced while maximal deformation was maintained constant, injury decreased. These findings implicate both peak volume and tidal volume in the development of barotrauma, and suggest that ventilation with PEEP and reduced tidal volumes, previously credited for enhancing alveolar recruitment, may also modulate epithelial injury by reducing the amplitude of cellular deformations. (Graph Presented).

Original languageEnglish (US)
JournalFASEB Journal
Volume12
Issue number5
StatePublished - Mar 20 1998
Externally publishedYes

Fingerprint

Alveolar Epithelial Cells
epithelial cells
Barotrauma
Wounds and Injuries
Lung
Tidal Volume
lungs
surface area
tidal volume
Total Lung Capacity
cells
Economic Inflation
Fibronectins
Ventilation
Cell Survival
Cell Culture Techniques
Cell Count
Epithelial Cells
Equus
fibronectins

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Cite this

Deformation-induced injury of alveolar epithelial cells : Effect of strain magnitude and amplitude. / Tschumperlin, Daniel J; Margulies, S. S.

In: FASEB Journal, Vol. 12, No. 5, 20.03.1998.

Research output: Contribution to journalArticle

@article{4a44762196f44b9988ae99a60ed1e198,
title = "Deformation-induced injury of alveolar epithelial cells: Effect of strain magnitude and amplitude",
abstract = "The alveolar epithelial lining of the lung undergoes significant increases in surface area at high lung volumes. These deformations may be critical in the development of pulmonary barotrauma. We tested the hypothesis that alveolar epithelial injury would increase both as a function of deformation amplitude, and maximal deformation. Alveolar type II cells from primary culture were seeded onto fibronectin coated silastic membranes and tested after 5 days in culture. Cells were exposed to uniform equi-biaxial deformations in a custom built device, and were subjected to changes in surface area of 12, 25, 37, and 50{\%}, which correspond to lung inflation to ∼ 60, 80, 100, and > 100{\%} of total lung capacity. Cells were also exposed to 0, 12, and 25{\%} changes in surface area superimposed on a tonic deformation of 25{\%}. Cells were continuously cycled for 1 hour at 15 cycles per minute. Alveolar epithelial injury was assessed quantitatively with a fluorescent cell viability assay, and defined as fraction of dead cells relative to total number of cells. Injury increased non-linearly with amplitude and maximum deformation (Figure), confirming our hypothesis. When deformation amplitude was reduced while maximal deformation was maintained constant, injury decreased. These findings implicate both peak volume and tidal volume in the development of barotrauma, and suggest that ventilation with PEEP and reduced tidal volumes, previously credited for enhancing alveolar recruitment, may also modulate epithelial injury by reducing the amplitude of cellular deformations. (Graph Presented).",
author = "Tschumperlin, {Daniel J} and Margulies, {S. S.}",
year = "1998",
month = "3",
day = "20",
language = "English (US)",
volume = "12",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "5",

}

TY - JOUR

T1 - Deformation-induced injury of alveolar epithelial cells

T2 - Effect of strain magnitude and amplitude

AU - Tschumperlin, Daniel J

AU - Margulies, S. S.

PY - 1998/3/20

Y1 - 1998/3/20

N2 - The alveolar epithelial lining of the lung undergoes significant increases in surface area at high lung volumes. These deformations may be critical in the development of pulmonary barotrauma. We tested the hypothesis that alveolar epithelial injury would increase both as a function of deformation amplitude, and maximal deformation. Alveolar type II cells from primary culture were seeded onto fibronectin coated silastic membranes and tested after 5 days in culture. Cells were exposed to uniform equi-biaxial deformations in a custom built device, and were subjected to changes in surface area of 12, 25, 37, and 50%, which correspond to lung inflation to ∼ 60, 80, 100, and > 100% of total lung capacity. Cells were also exposed to 0, 12, and 25% changes in surface area superimposed on a tonic deformation of 25%. Cells were continuously cycled for 1 hour at 15 cycles per minute. Alveolar epithelial injury was assessed quantitatively with a fluorescent cell viability assay, and defined as fraction of dead cells relative to total number of cells. Injury increased non-linearly with amplitude and maximum deformation (Figure), confirming our hypothesis. When deformation amplitude was reduced while maximal deformation was maintained constant, injury decreased. These findings implicate both peak volume and tidal volume in the development of barotrauma, and suggest that ventilation with PEEP and reduced tidal volumes, previously credited for enhancing alveolar recruitment, may also modulate epithelial injury by reducing the amplitude of cellular deformations. (Graph Presented).

AB - The alveolar epithelial lining of the lung undergoes significant increases in surface area at high lung volumes. These deformations may be critical in the development of pulmonary barotrauma. We tested the hypothesis that alveolar epithelial injury would increase both as a function of deformation amplitude, and maximal deformation. Alveolar type II cells from primary culture were seeded onto fibronectin coated silastic membranes and tested after 5 days in culture. Cells were exposed to uniform equi-biaxial deformations in a custom built device, and were subjected to changes in surface area of 12, 25, 37, and 50%, which correspond to lung inflation to ∼ 60, 80, 100, and > 100% of total lung capacity. Cells were also exposed to 0, 12, and 25% changes in surface area superimposed on a tonic deformation of 25%. Cells were continuously cycled for 1 hour at 15 cycles per minute. Alveolar epithelial injury was assessed quantitatively with a fluorescent cell viability assay, and defined as fraction of dead cells relative to total number of cells. Injury increased non-linearly with amplitude and maximum deformation (Figure), confirming our hypothesis. When deformation amplitude was reduced while maximal deformation was maintained constant, injury decreased. These findings implicate both peak volume and tidal volume in the development of barotrauma, and suggest that ventilation with PEEP and reduced tidal volumes, previously credited for enhancing alveolar recruitment, may also modulate epithelial injury by reducing the amplitude of cellular deformations. (Graph Presented).

UR - http://www.scopus.com/inward/record.url?scp=33749221832&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749221832&partnerID=8YFLogxK

M3 - Article

VL - 12

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 5

ER -