Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation

Roman E. Perri, Daniel A. Langer, Suvro Chatterjee, Simon J. Gibbons, Jay Gadgil, Sheng Cao, Gianrico Farrugia, Vijay H. Shah

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo- [4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3′,5′-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca2+ accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.

Original languageEnglish (US)
Pages (from-to)G535-G542
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume290
Issue number3
DOIs
StatePublished - Mar 2006

Keywords

  • Guanylate cyclase
  • Protein kinase G

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation'. Together they form a unique fingerprint.

Cite this