Deep-learning for seizure forecasting in canines with epilepsy

Petr Nejedly, Vaclav Kremen, Vladimir Sladky, Mona Nasseri, Hari Guragain, Petr Klimes, Jan Cimbalnik, Yogatheesan Varatharajah, Benjamin H. Brinkmann, Gregory A. Worrell

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Objective. This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. Approach. The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. Main results. The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p < 0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. Significance. Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.

Original languageEnglish (US)
Article number036031
JournalJournal of neural engineering
Volume16
Issue number3
DOIs
StatePublished - 2019

Keywords

  • Canine epilepsy
  • Convolutional neural networks (CNN)
  • Deep learning
  • Epilepsy
  • Machine learning
  • Monte Carlo simulation
  • Real-time seizure forecasting

ASJC Scopus subject areas

  • Biomedical Engineering
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Deep-learning for seizure forecasting in canines with epilepsy'. Together they form a unique fingerprint.

Cite this