Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury

Caroline N. Jones, Nazgul Tuleuova, Ji Youn Lee, Erlan Ramanculov, A. Hari Reddi, Mark A. Zern, Alexander Revzin

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 μm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100. m. m ethanol for 48. h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3% as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3%) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.

Original languageEnglish (US)
Pages (from-to)5936-5944
Number of pages9
JournalBiomaterials
Volume31
Issue number23
DOIs
StatePublished - Aug 2010

Keywords

  • Growth factor microarrays
  • Hepatocytes
  • Liver injury
  • Micropatterned cocultures
  • Protein microarrays

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Ceramics and Composites
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury'. Together they form a unique fingerprint.

Cite this