TY - JOUR
T1 - Cross-sectional Associations of β-Amyloid, Tau, and Cerebrovascular Biomarkers with Neurodegeneration in Probable Dementia with Lewy Bodies
AU - Ferreira, Daniel
AU - Przybelski, Scott A.
AU - Lesnick, Timothy G.
AU - Schwarz, Christopher G.
AU - Diaz-Galvan, Patricia
AU - Graff-Radford, Jonathan
AU - Senjem, Matthew L.
AU - Fields, Julie A.
AU - Knopman, David S.
AU - Jones, David T.
AU - Savica, Rodolfo
AU - Ferman, Tanis J.
AU - Graff-Radford, Neill
AU - Lowe, Val J.
AU - Jack, Clifford R.
AU - Petersen, Ronald C.
AU - Westman, Eric
AU - Boeve, Brad F.
AU - Kantarci, Kejal
N1 - Funding Information:
This study was supported by the NIH (U01- NS100620, P50-AG016574, P30-AG62677, U01-AG006786, R37-AG011378, R01-AG041851, R01-AG040042, C06-RR018898, and R01-NS080820), Foundation Dr. Corinne Schuler, the Mangurian Foundation for Lewy Body Research, the Elsie and Marvin Dekelboum Family Foundation, the Little Family Foundation, the Ted Turner and Family Foundation LBD Functional Genomics Program, the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program, Center for Innovative Medicine (CIMED), the Swedish Brain Foundation (Hjärnfonden), the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Swedish Alzheimer Foundation (Alzheimerfonden), Neurofonden, the Swedish Dementia Funding (Demensfonden), Karolinska Institutet travel grants, Funding for Research from Karolinska Institutet, the Gun och Bertil Stohnes Foundation, the Gamla Tjänarinnor Foundation, and the Foundation for Geriatric Diseases at Karolinska Institutet. The sponsors played no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.
Publisher Copyright:
© 2022 American Academy of Neurology.
PY - 2023/2/21
Y1 - 2023/2/21
N2 - Background and ObjectivesAlthough alpha-synuclein-related pathology is the hallmark of dementia with Lewy bodies (DLB), cerebrovascular and Alzheimer disease pathologies are common in patients with DLB. Little is known about the contribution of these pathologies to neurodegeneration in DLB. We investigated associations of cerebrovascular, β-amyloid, and tau biomarkers with gray matter (GM) volume in patients with probable DLB.MethodsWe assessed patients with probable DLB and cognitively unimpaired (CU) controls with 11C-Pittsburgh compound B (PiB) and 18F-flortaucipir PET as markers of β-amyloid and tau, respectively. MRI was used to assess white matter hyperintensity (WMH) volume (a marker of cerebrovascular lesion load) and regional GM volume (a marker of neurodegeneration). We used correlations and analysis of covariance (ANCOVA) in the entire cohort and structural equation models (SEMs) in patients with DLB to investigate associations of WMH volume and regional β-amyloid and tau PET standardized uptake value ratios (SUVrs) with regional GM volume.ResultsWe included 30 patients with DLB (69.3 ± 10.2 years, 87% men) and 100 CU controls balanced on age and sex. Compared with CU controls, patients with DLB showed a lower GM volume across all cortical and subcortical regions except for the cuneus, putamen, and pallidum. A larger WMH volume was associated with a lower volume in the medial and orbital frontal cortices, insula, fusiform cortex, and thalamus in patients with DLB. A higher PiB SUVr was associated with a lower volume in the inferior temporal cortex, while flortaucipir SUVr did not correlate with GM volume. SEMs showed that a higher age and absence of the APOE ϵ4 allele were significant predictors of higher WMH volume, and WMH volume in turn was a significant predictor of GM volume in medial and orbital frontal cortices, insula, and inferior temporal cortex. By contrast, we observed 2 distinct paths for the fusiform cortex, with age having an effect through PiB and flortaucipir SUVr on one path and through WMH volume on the other path.DiscussionPatients with probable DLB have widespread cortical atrophy, most of which is likely influenced by alpha-synuclein-related pathology. Although cerebrovascular, β-amyloid, and tau pathologies often coexist in probable DLB, their contributions to neurodegeneration seem to be region specific.
AB - Background and ObjectivesAlthough alpha-synuclein-related pathology is the hallmark of dementia with Lewy bodies (DLB), cerebrovascular and Alzheimer disease pathologies are common in patients with DLB. Little is known about the contribution of these pathologies to neurodegeneration in DLB. We investigated associations of cerebrovascular, β-amyloid, and tau biomarkers with gray matter (GM) volume in patients with probable DLB.MethodsWe assessed patients with probable DLB and cognitively unimpaired (CU) controls with 11C-Pittsburgh compound B (PiB) and 18F-flortaucipir PET as markers of β-amyloid and tau, respectively. MRI was used to assess white matter hyperintensity (WMH) volume (a marker of cerebrovascular lesion load) and regional GM volume (a marker of neurodegeneration). We used correlations and analysis of covariance (ANCOVA) in the entire cohort and structural equation models (SEMs) in patients with DLB to investigate associations of WMH volume and regional β-amyloid and tau PET standardized uptake value ratios (SUVrs) with regional GM volume.ResultsWe included 30 patients with DLB (69.3 ± 10.2 years, 87% men) and 100 CU controls balanced on age and sex. Compared with CU controls, patients with DLB showed a lower GM volume across all cortical and subcortical regions except for the cuneus, putamen, and pallidum. A larger WMH volume was associated with a lower volume in the medial and orbital frontal cortices, insula, fusiform cortex, and thalamus in patients with DLB. A higher PiB SUVr was associated with a lower volume in the inferior temporal cortex, while flortaucipir SUVr did not correlate with GM volume. SEMs showed that a higher age and absence of the APOE ϵ4 allele were significant predictors of higher WMH volume, and WMH volume in turn was a significant predictor of GM volume in medial and orbital frontal cortices, insula, and inferior temporal cortex. By contrast, we observed 2 distinct paths for the fusiform cortex, with age having an effect through PiB and flortaucipir SUVr on one path and through WMH volume on the other path.DiscussionPatients with probable DLB have widespread cortical atrophy, most of which is likely influenced by alpha-synuclein-related pathology. Although cerebrovascular, β-amyloid, and tau pathologies often coexist in probable DLB, their contributions to neurodegeneration seem to be region specific.
UR - http://www.scopus.com/inward/record.url?scp=85146758017&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146758017&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000201579
DO - 10.1212/WNL.0000000000201579
M3 - Article
C2 - 36443011
AN - SCOPUS:85146758017
SN - 0028-3878
VL - 100
SP - E846-E859
JO - Neurology
JF - Neurology
IS - 8
ER -