Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine

Todd J Schwedt, Catherine D. Chong

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Background/Objective: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. Methods: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. Results: Controls had negative correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected) with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected) for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected) for a left superior temporal/inferior parietal region. Conclusions: Unlike healthy control subjects who have a significant negative correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds, migraineurs have a non-significant positive correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds. Since this region participates in orienting and attention to painful stimuli, absence of the normal correlation might represent a migraineurs inability to inhibit pain sensation via shifting attention away from the painful stimulus.

Original languageEnglish (US)
Article numbere99791
JournalPLoS One
Volume9
Issue number6
DOIs
StatePublished - Jun 16 2014

Fingerprint

migraine
Pain Threshold
Parietal Lobe
Migraine Disorders
pain
Brain
brain
Skin
Pain
Brain models
Gyrus Cinguli
Magnetic resonance
Processing
Temporal Lobe
Imaging techniques
Linear Models
Healthy Volunteers
Anxiety
Hot Temperature

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine. / Schwedt, Todd J; Chong, Catherine D.

In: PLoS One, Vol. 9, No. 6, e99791, 16.06.2014.

Research output: Contribution to journalArticle

@article{e68c849f352c4dbbb6efe73156e6b8e2,
title = "Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine",
abstract = "Background/Objective: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. Methods: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. Results: Controls had negative correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected) with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected) for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected) for a left superior temporal/inferior parietal region. Conclusions: Unlike healthy control subjects who have a significant negative correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds, migraineurs have a non-significant positive correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds. Since this region participates in orienting and attention to painful stimuli, absence of the normal correlation might represent a migraineurs inability to inhibit pain sensation via shifting attention away from the painful stimulus.",
author = "Schwedt, {Todd J} and Chong, {Catherine D.}",
year = "2014",
month = "6",
day = "16",
doi = "10.1371/journal.pone.0099791",
language = "English (US)",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine

AU - Schwedt, Todd J

AU - Chong, Catherine D.

PY - 2014/6/16

Y1 - 2014/6/16

N2 - Background/Objective: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. Methods: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. Results: Controls had negative correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected) with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected) for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected) for a left superior temporal/inferior parietal region. Conclusions: Unlike healthy control subjects who have a significant negative correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds, migraineurs have a non-significant positive correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds. Since this region participates in orienting and attention to painful stimuli, absence of the normal correlation might represent a migraineurs inability to inhibit pain sensation via shifting attention away from the painful stimulus.

AB - Background/Objective: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. Methods: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. Results: Controls had negative correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected) with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected) for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected) for a left superior temporal/inferior parietal region. Conclusions: Unlike healthy control subjects who have a significant negative correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds, migraineurs have a non-significant positive correlation between cortical thickness in a superior temporal/inferior parietal region with pain thresholds. Since this region participates in orienting and attention to painful stimuli, absence of the normal correlation might represent a migraineurs inability to inhibit pain sensation via shifting attention away from the painful stimulus.

UR - http://www.scopus.com/inward/record.url?scp=84903289377&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903289377&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0099791

DO - 10.1371/journal.pone.0099791

M3 - Article

C2 - 24932546

AN - SCOPUS:84903289377

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 6

M1 - e99791

ER -