Conformation of myosin interdomain interactions during contraction: Deductions from proteins in solution

T. P. Burghardt, S. Park, K. Ajtai

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Myosin subfragment 1 (S1) is the ATP catalyzing motor protein in muscle. It consists of three domains that catalyze ATP and bind actin (catalytic), conduct energy transduction (converter), and transport the load (lever arm). These domains interface in two places identified as interface I, containing the reactive thiol (SH1) and ATP-sensitive tryptophan (Trp510), and interface II, containing the reactive lysine residue (RLR). Two crystal structures of S1 were extrapolated to working "in solution" or oriented "in tissue" forms, using structure-sensitive optical spectroscopic signals from extrinsic probes located in the interfaces. Observed signals included circular dichroism (CD) and absorption originating from S1 in solution in the presence and absence of actin and fluorescence polarization from cross-bridges in muscle fibers. Theoretical signals were calculated from S1 crystal structure models perturbed with lever arm movement from swiveling at three conserved glycines, 699, 703, and 710 (chicken skeletal myosin numbering). Structures giving the best agreement between the computed and observed signals were selected as the representative forms. Both interfaces undergo dramatic conformational change during ATPase and force development. Changes at interface I suggest the molecular basis for the collisional quenching sensitivity of Trp510 to nucleotide binding. The probe conformation at SH1 suggests how it alters S1 ATPases. At interface II, the spatial relationship of the lever arm and the extrinsic probe at RLR suggests how the probe alters S1 ATPases and that it should inhibit lever arm movement during the power stroke. The latter possibility, if true, establishes a part of the corridor through which the lever arm swings during the power stroke. Global structural changes in actomyosin are discussed in the accompanying paper [Burghardt et al. (2001) Biochemistry 40, 4821-4833].

Original languageEnglish (US)
Pages (from-to)4834-4843
Number of pages10
JournalBiochemistry
Volume40
Issue number15
DOIs
StatePublished - Apr 17 2001

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Conformation of myosin interdomain interactions during contraction: Deductions from proteins in solution'. Together they form a unique fingerprint.

Cite this