Computed Tomography Cholangiography Using the Magnetic Resonance Contrast Agent Gadoxetate Disodium: A Phantom Study

Samantha K.N. Dilger, Noelle Nelson, Sudhakar K Venkatesh, Eric Ehman, Jeff L. Fidler, Joel Garland Fletcher, Cynthia H McCollough, Lifeng Yu

Research output: Contribution to journalArticle

Abstract

Objective The purpose of this work is to determine whether low doses of gadoxetate disodium (Eovist; Bayer Healthcare LLC, Whippany, NJ), a gadolinium-based contrast agent used for magnetic resonance liver imaging, can be visualized for computed tomography (CT) cholangiography using a phantom setup. Materials and Methods Vials containing 4 concentrations of gadoxetate disodium (1.9, 3.4, 4.8, and 9.6 mg Gd/mL) were placed in a 35 × 26-cm2 water phantom and imaged on 2 CT scanners: Siemens Somatom Flash and Force (Siemens Healthcare, Erlangen, Germany). These concentrations correspond to the estimated concentration in the bile duct for a 40-, 70-, or 100-kg patient, and twice the concentration of a 100-kg patient, respectively. Single-energy (SE) scans were acquired at 70, 80, 90, 100, 120, and 140 kVp, and dual-energy scans were acquired at 90/150Sn (Force) and 100/150 (Flash) for 2 dose levels (CTDIvol 13 and 23 mGy). Virtual monoenergetic images at 50 keV were created (Mono+; Siemens Healthcare, Erlangen, Germany). The mean intensity and standard deviation for each concentration of gadoxetate disodium and the water background were extracted from each image set and used to compute the contrast and contrast-to-noise ratio (CNR). To determine whether the signal provided by gadoxetate disodium was clinically sufficient, the measures were compared with those acquired from 12 clinical CT cholangiography examinations performed with iodine-containing iodipamide meglumine. Results From the retrospective clinical cohort, mean contrast (± standard deviation) of 239 ± 107 HU and CNR of 12.8 ± 4.2 were found in the bile duct relative to the liver. Comparing these metrics to the gadoxetate disodium samples, the highest concentration (9.6 mg Gd/mL) surpassed these thresholds at all energy levels. The 4.8 mg Gd/mL had sufficient CNR in the Force, but not in the Flash. The 3.4 mg Gd/mL had clinically relevant CNR at low kV of SE (<100 kVp) and 50 keV of dual energy in the Force but was insufficient in the Flash. Images acquired by the Force had a lower noise level and greater CNR compared with the Flash. Similar trends were seen at both dose levels. Conclusions Gadoxetate disodium shows promise as a viable contrast agent for CT cholangiography, with CNR similar to those seen clinically with an iodine-based contrast agent. Dual-energy CT or low kV SE-CT is helpful to enhance the signal.

Original languageEnglish (US)
Pages (from-to)572-579
Number of pages8
JournalInvestigative radiology
Volume54
Issue number9
DOIs
StatePublished - Sep 1 2019

Fingerprint

Cholangiography
Contrast Media
Noise
Magnetic Resonance Spectroscopy
Tomography
Bile Ducts
Delivery of Health Care
Iodine
Germany
X-Ray Computed Tomography Scanners
Water
Liver
Gadolinium
gadolinium ethoxybenzyl DTPA
Magnetic Resonance Imaging

Keywords

  • cholangiography
  • computed tomography
  • contrast agent
  • gadolinium

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

@article{f2eb3342929a4d3d9c37431f2b2034af,
title = "Computed Tomography Cholangiography Using the Magnetic Resonance Contrast Agent Gadoxetate Disodium: A Phantom Study",
abstract = "Objective The purpose of this work is to determine whether low doses of gadoxetate disodium (Eovist; Bayer Healthcare LLC, Whippany, NJ), a gadolinium-based contrast agent used for magnetic resonance liver imaging, can be visualized for computed tomography (CT) cholangiography using a phantom setup. Materials and Methods Vials containing 4 concentrations of gadoxetate disodium (1.9, 3.4, 4.8, and 9.6 mg Gd/mL) were placed in a 35 × 26-cm2 water phantom and imaged on 2 CT scanners: Siemens Somatom Flash and Force (Siemens Healthcare, Erlangen, Germany). These concentrations correspond to the estimated concentration in the bile duct for a 40-, 70-, or 100-kg patient, and twice the concentration of a 100-kg patient, respectively. Single-energy (SE) scans were acquired at 70, 80, 90, 100, 120, and 140 kVp, and dual-energy scans were acquired at 90/150Sn (Force) and 100/150 (Flash) for 2 dose levels (CTDIvol 13 and 23 mGy). Virtual monoenergetic images at 50 keV were created (Mono+; Siemens Healthcare, Erlangen, Germany). The mean intensity and standard deviation for each concentration of gadoxetate disodium and the water background were extracted from each image set and used to compute the contrast and contrast-to-noise ratio (CNR). To determine whether the signal provided by gadoxetate disodium was clinically sufficient, the measures were compared with those acquired from 12 clinical CT cholangiography examinations performed with iodine-containing iodipamide meglumine. Results From the retrospective clinical cohort, mean contrast (± standard deviation) of 239 ± 107 HU and CNR of 12.8 ± 4.2 were found in the bile duct relative to the liver. Comparing these metrics to the gadoxetate disodium samples, the highest concentration (9.6 mg Gd/mL) surpassed these thresholds at all energy levels. The 4.8 mg Gd/mL had sufficient CNR in the Force, but not in the Flash. The 3.4 mg Gd/mL had clinically relevant CNR at low kV of SE (<100 kVp) and 50 keV of dual energy in the Force but was insufficient in the Flash. Images acquired by the Force had a lower noise level and greater CNR compared with the Flash. Similar trends were seen at both dose levels. Conclusions Gadoxetate disodium shows promise as a viable contrast agent for CT cholangiography, with CNR similar to those seen clinically with an iodine-based contrast agent. Dual-energy CT or low kV SE-CT is helpful to enhance the signal.",
keywords = "cholangiography, computed tomography, contrast agent, gadolinium",
author = "Dilger, {Samantha K.N.} and Noelle Nelson and Venkatesh, {Sudhakar K} and Eric Ehman and Fidler, {Jeff L.} and Fletcher, {Joel Garland} and McCollough, {Cynthia H} and Lifeng Yu",
year = "2019",
month = "9",
day = "1",
doi = "10.1097/RLI.0000000000000580",
language = "English (US)",
volume = "54",
pages = "572--579",
journal = "Investigative Radiology",
issn = "0020-9996",
publisher = "Lippincott Williams and Wilkins",
number = "9",

}

TY - JOUR

T1 - Computed Tomography Cholangiography Using the Magnetic Resonance Contrast Agent Gadoxetate Disodium

T2 - A Phantom Study

AU - Dilger, Samantha K.N.

AU - Nelson, Noelle

AU - Venkatesh, Sudhakar K

AU - Ehman, Eric

AU - Fidler, Jeff L.

AU - Fletcher, Joel Garland

AU - McCollough, Cynthia H

AU - Yu, Lifeng

PY - 2019/9/1

Y1 - 2019/9/1

N2 - Objective The purpose of this work is to determine whether low doses of gadoxetate disodium (Eovist; Bayer Healthcare LLC, Whippany, NJ), a gadolinium-based contrast agent used for magnetic resonance liver imaging, can be visualized for computed tomography (CT) cholangiography using a phantom setup. Materials and Methods Vials containing 4 concentrations of gadoxetate disodium (1.9, 3.4, 4.8, and 9.6 mg Gd/mL) were placed in a 35 × 26-cm2 water phantom and imaged on 2 CT scanners: Siemens Somatom Flash and Force (Siemens Healthcare, Erlangen, Germany). These concentrations correspond to the estimated concentration in the bile duct for a 40-, 70-, or 100-kg patient, and twice the concentration of a 100-kg patient, respectively. Single-energy (SE) scans were acquired at 70, 80, 90, 100, 120, and 140 kVp, and dual-energy scans were acquired at 90/150Sn (Force) and 100/150 (Flash) for 2 dose levels (CTDIvol 13 and 23 mGy). Virtual monoenergetic images at 50 keV were created (Mono+; Siemens Healthcare, Erlangen, Germany). The mean intensity and standard deviation for each concentration of gadoxetate disodium and the water background were extracted from each image set and used to compute the contrast and contrast-to-noise ratio (CNR). To determine whether the signal provided by gadoxetate disodium was clinically sufficient, the measures were compared with those acquired from 12 clinical CT cholangiography examinations performed with iodine-containing iodipamide meglumine. Results From the retrospective clinical cohort, mean contrast (± standard deviation) of 239 ± 107 HU and CNR of 12.8 ± 4.2 were found in the bile duct relative to the liver. Comparing these metrics to the gadoxetate disodium samples, the highest concentration (9.6 mg Gd/mL) surpassed these thresholds at all energy levels. The 4.8 mg Gd/mL had sufficient CNR in the Force, but not in the Flash. The 3.4 mg Gd/mL had clinically relevant CNR at low kV of SE (<100 kVp) and 50 keV of dual energy in the Force but was insufficient in the Flash. Images acquired by the Force had a lower noise level and greater CNR compared with the Flash. Similar trends were seen at both dose levels. Conclusions Gadoxetate disodium shows promise as a viable contrast agent for CT cholangiography, with CNR similar to those seen clinically with an iodine-based contrast agent. Dual-energy CT or low kV SE-CT is helpful to enhance the signal.

AB - Objective The purpose of this work is to determine whether low doses of gadoxetate disodium (Eovist; Bayer Healthcare LLC, Whippany, NJ), a gadolinium-based contrast agent used for magnetic resonance liver imaging, can be visualized for computed tomography (CT) cholangiography using a phantom setup. Materials and Methods Vials containing 4 concentrations of gadoxetate disodium (1.9, 3.4, 4.8, and 9.6 mg Gd/mL) were placed in a 35 × 26-cm2 water phantom and imaged on 2 CT scanners: Siemens Somatom Flash and Force (Siemens Healthcare, Erlangen, Germany). These concentrations correspond to the estimated concentration in the bile duct for a 40-, 70-, or 100-kg patient, and twice the concentration of a 100-kg patient, respectively. Single-energy (SE) scans were acquired at 70, 80, 90, 100, 120, and 140 kVp, and dual-energy scans were acquired at 90/150Sn (Force) and 100/150 (Flash) for 2 dose levels (CTDIvol 13 and 23 mGy). Virtual monoenergetic images at 50 keV were created (Mono+; Siemens Healthcare, Erlangen, Germany). The mean intensity and standard deviation for each concentration of gadoxetate disodium and the water background were extracted from each image set and used to compute the contrast and contrast-to-noise ratio (CNR). To determine whether the signal provided by gadoxetate disodium was clinically sufficient, the measures were compared with those acquired from 12 clinical CT cholangiography examinations performed with iodine-containing iodipamide meglumine. Results From the retrospective clinical cohort, mean contrast (± standard deviation) of 239 ± 107 HU and CNR of 12.8 ± 4.2 were found in the bile duct relative to the liver. Comparing these metrics to the gadoxetate disodium samples, the highest concentration (9.6 mg Gd/mL) surpassed these thresholds at all energy levels. The 4.8 mg Gd/mL had sufficient CNR in the Force, but not in the Flash. The 3.4 mg Gd/mL had clinically relevant CNR at low kV of SE (<100 kVp) and 50 keV of dual energy in the Force but was insufficient in the Flash. Images acquired by the Force had a lower noise level and greater CNR compared with the Flash. Similar trends were seen at both dose levels. Conclusions Gadoxetate disodium shows promise as a viable contrast agent for CT cholangiography, with CNR similar to those seen clinically with an iodine-based contrast agent. Dual-energy CT or low kV SE-CT is helpful to enhance the signal.

KW - cholangiography

KW - computed tomography

KW - contrast agent

KW - gadolinium

UR - http://www.scopus.com/inward/record.url?scp=85071018509&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071018509&partnerID=8YFLogxK

U2 - 10.1097/RLI.0000000000000580

DO - 10.1097/RLI.0000000000000580

M3 - Article

C2 - 31261292

AN - SCOPUS:85071018509

VL - 54

SP - 572

EP - 579

JO - Investigative Radiology

JF - Investigative Radiology

SN - 0020-9996

IS - 9

ER -