TY - JOUR
T1 - Comparison of the BioFire Joint Infection Panel to 16S Ribosomal RNA Gene-Based Targeted Metagenomic Sequencing for Testing Synovial Fluid from Patients with Knee Arthroplasty Failure
AU - Azad, Marisa A.
AU - Wolf, Matthew J.
AU - Strasburg, Angela P.
AU - Daniels, Matthew L.
AU - Starkey, Jordan C.
AU - Donadio, Alexander D.
AU - Abdel, Matthew P.
AU - Greenwood-Quaintance, Kerryl E.
AU - Patel, Robin
N1 - Funding Information:
Editor Nathan A. Ledeboer, Medical College of Wisconsin Copyright © 2022 American Society for Microbiology. All Rights Reserved. Address correspondence to Robin Patel, patel.robin@mayo.edu. The authors declare a conflict of interest. M.A.A., M.J.W., A.P.S., M.L.D., J.C.S., A.D.D., M.P.A., and K.E.G.-Q. have no conflicts of interests to declare. R.P. reports grants from ContraFect, TenNor Therapeutics Limited, and BioFire. R.P. is a consultant to Curetis, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics, PhAST, Torus Biosystems, Day Zero Diagnostics, Mammoth Biosciences, and Qvella; monies are paid to Mayo Clinic. Mayo Clinic and R.P. have a relationship with Pathogenomix. R.P. has research supported by Adaptive Phage Therapeutics. Mayo Clinic has a royalty-bearing know-how agreement and equity in Adaptive Phage Therapeutics. R.P. is also a consultant to Netflix and CARB-X. In addition, R.P. has a patent on Bordetella pertussis/parapertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued. R.P. receives honoraria from the NBME, Up-to-Date and the Infectious Diseases Board Review Course. Received 1 August 2022 Returned for modification 25 August 2022 Accepted 31 October 2022 Published 21 November 2022
Funding Information:
BioFire (bioMérieux) supplied 60 single-use BioFire JI panels for this study. M.A.A., M.J.W., A.P.S., M.L.D., J.C.S., A.D.D., M.P.A., and K.E.G.-Q. have no conflicts of interests to declare. R.P. reports grants from ContraFect, TenNor Therapeutics Limited, and BioFire. R.P. is a consultant to Curetis, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics, PhAST, Torus Biosystems, Day Zero Diagnostics, Mammoth Biosciences, and Qvella; money is paid to Mayo Clinic. Mayo Clinic and R.P. have a relationship with Pathogenomix. R.P. has research supported by Adaptive Phage Therapeutics. Mayo Clinic has a royalty-bearing know-how agreement and equity in Adaptive Phage Therapeutics. R.P. is also a consultant to Netflix and CARB-X. In addition, R.P. has a patent on Bordetella pertussis/Bordetella parapertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an antibiofilm substance issued. R.P. receives honoraria from the NBME, Up-to-Date, and the Infectious Diseases Board Review Course.
Publisher Copyright:
Copyright © 2022 American Society for Microbiology. All Rights Reserved.
PY - 2022/12
Y1 - 2022/12
N2 - The diagnosis of periprosthetic joint infection (PJI) is challenging, often requiring multiple clinical specimens and diagnostic techniques, some with prolonged result turnaround times. Here, the diagnostic performance of the Investigational Use Only (IUO) BioFire Joint Infection (JI) Panel was compared to 16S rRNA gene-based targeted metagenomic sequencing (tMGS) applied to synovial fluid for PJI diagnosis. Sixty synovial fluid samples from knee arthroplasty failure archived at -80°C were tested. Infectious Diseases Society of America (IDSA) diagnostic criteria were used to classify PJI. For culture-positive PJI with pathogens targeted by the JI panel, JI panel sensitivity was 91% (21/23; 95% confidence interval [CI], 73 to 98%), and tMGS sensitivity was 96% (23/24; 95% CI, 80 to 99%) (P = 0.56). Overall sensitivities of the JI panel and tMGS for PJI diagnosis were 56% (24/43; 95% CI, 41 to 70%) and 93% (41/44; 95% CI, 82 to 98%), respectively (P < 0.001). JI panel and tMGS overall specificities were 100% (16/16; 95% CI, 81 to 100%) and 94% (15/16; 95% CI, 72 to 99%), respectively. While the clinical sensitivity of the JI panel was excellent for on-panel microorganisms, overall sensitivity for PJI diagnosis was low due to the absence of Staphylococcus epidermidis, a common causative pathogen of PJI, on the panel. A PJI diagnostic algorithm for the use of both molecular tests is proposed.
AB - The diagnosis of periprosthetic joint infection (PJI) is challenging, often requiring multiple clinical specimens and diagnostic techniques, some with prolonged result turnaround times. Here, the diagnostic performance of the Investigational Use Only (IUO) BioFire Joint Infection (JI) Panel was compared to 16S rRNA gene-based targeted metagenomic sequencing (tMGS) applied to synovial fluid for PJI diagnosis. Sixty synovial fluid samples from knee arthroplasty failure archived at -80°C were tested. Infectious Diseases Society of America (IDSA) diagnostic criteria were used to classify PJI. For culture-positive PJI with pathogens targeted by the JI panel, JI panel sensitivity was 91% (21/23; 95% confidence interval [CI], 73 to 98%), and tMGS sensitivity was 96% (23/24; 95% CI, 80 to 99%) (P = 0.56). Overall sensitivities of the JI panel and tMGS for PJI diagnosis were 56% (24/43; 95% CI, 41 to 70%) and 93% (41/44; 95% CI, 82 to 98%), respectively (P < 0.001). JI panel and tMGS overall specificities were 100% (16/16; 95% CI, 81 to 100%) and 94% (15/16; 95% CI, 72 to 99%), respectively. While the clinical sensitivity of the JI panel was excellent for on-panel microorganisms, overall sensitivity for PJI diagnosis was low due to the absence of Staphylococcus epidermidis, a common causative pathogen of PJI, on the panel. A PJI diagnostic algorithm for the use of both molecular tests is proposed.
KW - next-generation sequencing
KW - PCR
KW - periprosthetic joint infection
KW - rapid diagnostic
UR - http://www.scopus.com/inward/record.url?scp=85144594914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144594914&partnerID=8YFLogxK
U2 - 10.1128/jcm.01126-22
DO - 10.1128/jcm.01126-22
M3 - Article
C2 - 36409108
AN - SCOPUS:85144594914
VL - 60
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
SN - 0095-1137
IS - 12
ER -