Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans

Adil Eddie Bharucha, Karthik Ravi, Alan R. Zinsmeister

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4%, mean ± SE], 7.5 mg ER [34.4 ± 6.1%], 15 mg ER [20.4 ± 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume299
Issue number1
DOIs
StatePublished - Jul 2010

Fingerprint

Gastrointestinal Transit
Muscarinic Antagonists
Habits
Placebos
Gastric Emptying
Muscarinic M3 Receptors
Irritable Bowel Syndrome
Muscarinic Receptors
Radionuclide Imaging
Cholinergic Agents
Acetylcholine
Diarrhea
Healthy Volunteers
Colon
Motor Activity
darifenacin
Tolterodine Tartrate

Keywords

  • Cholinergic
  • Colonic
  • Irritable bowel syndrome
  • Motility
  • Small intestine

ASJC Scopus subject areas

  • Gastroenterology
  • Physiology (medical)
  • Physiology
  • Hepatology
  • Medicine(all)

Cite this

@article{07c624c3f5c44576b4071b0d96475aed,
title = "Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans",
abstract = "Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4{\%}, mean ± SE], 7.5 mg ER [34.4 ± 6.1{\%}], 15 mg ER [20.4 ± 6.3{\%})]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.",
keywords = "Cholinergic, Colonic, Irritable bowel syndrome, Motility, Small intestine",
author = "Bharucha, {Adil Eddie} and Karthik Ravi and Zinsmeister, {Alan R.}",
year = "2010",
month = "7",
doi = "10.1152/ajpgi.00072.2010",
language = "English (US)",
volume = "299",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans

AU - Bharucha, Adil Eddie

AU - Ravi, Karthik

AU - Zinsmeister, Alan R.

PY - 2010/7

Y1 - 2010/7

N2 - Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4%, mean ± SE], 7.5 mg ER [34.4 ± 6.1%], 15 mg ER [20.4 ± 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.

AB - Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4%, mean ± SE], 7.5 mg ER [34.4 ± 6.1%], 15 mg ER [20.4 ± 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.

KW - Cholinergic

KW - Colonic

KW - Irritable bowel syndrome

KW - Motility

KW - Small intestine

UR - http://www.scopus.com/inward/record.url?scp=77954379537&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954379537&partnerID=8YFLogxK

U2 - 10.1152/ajpgi.00072.2010

DO - 10.1152/ajpgi.00072.2010

M3 - Article

C2 - 20395537

AN - SCOPUS:77954379537

VL - 299

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1

ER -