Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast

Michael K. O'Connor, Hua Li, Deborah Rhodes, Carrie B Hruska, Conor B. Clancy, Richard J. Vetter

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Purpose: Recent studies have raised concerns about exposure to low-dose ionizing radiation from medical imaging procedures. Little has been published regarding the relative exposure and risks associated with breast imaging techniques such as breast specific gamma imaging (BSGI), molecular breast imaging (MBI), or positron emission mammography (PEM). The purpose of this article was to estimate and compare the risks of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and MBI in a screening environment. Methods: The authors used a common scheme for all estimates of cancer incidence and mortality based on the excess absolute risk model from the BEIR VII report. The lifetime attributable risk model was used to estimate the lifetime risk of radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence and mortality were based on a population of 100 000 females followed from birth to age 80 and adjusted for the fraction that survives to various ages between 0 and 80. Assuming annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer incidence and mortality attributed to digital mammography, screen-film mammography, MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality from natural background radiation was calculated as a useful reference. Assuming a 15%-32% reduction in mortality from screening, the benefit/risk ratio for the different imaging modalities was evaluated. Results: Using conventional doses of 925 MBq Tc-99m sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer incidence and mortality were found to be 15-30 times higher than digital mammography. The benefit/risk ratio for annual digital mammography was >50:1 for both the 40-80 and 50-80 screening groups, but dropped to 3:1 for the 40-49 age group. If the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the administered doses need to be in the range 75-150 MBq for Tc-99m sestamibi and 35 MBq-70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of mammography in these age groups. These dose ranges should be achievable with enhancements to current technology while maintaining a reasonable examination time. Conclusions: The results of the dose estimates in this study clearly indicate that if molecular imaging techniques are to be of value in screening for breast cancer, then the administered doses need to be substantially reduced to better match the effective doses of mammography.

Original languageEnglish (US)
Pages (from-to)6187-6198
Number of pages12
JournalMedical Physics
Volume37
Issue number12
DOIs
StatePublished - Dec 2010

Fingerprint

Radiation-Induced Neoplasms
Molecular Imaging
Mammography
Breast
Mortality
Electrons
Incidence
Background Radiation
Odds Ratio
Neoplasms
Radiation Exposure
Age Groups
Breast Neoplasms
Diagnostic Imaging
Ionizing Radiation

Keywords

  • BSGI
  • mammography
  • MBI
  • PEM
  • radiation risk

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. / O'Connor, Michael K.; Li, Hua; Rhodes, Deborah; Hruska, Carrie B; Clancy, Conor B.; Vetter, Richard J.

In: Medical Physics, Vol. 37, No. 12, 12.2010, p. 6187-6198.

Research output: Contribution to journalArticle

@article{2ca07f509df44c91b79ed6ecb32e7866,
title = "Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast",
abstract = "Purpose: Recent studies have raised concerns about exposure to low-dose ionizing radiation from medical imaging procedures. Little has been published regarding the relative exposure and risks associated with breast imaging techniques such as breast specific gamma imaging (BSGI), molecular breast imaging (MBI), or positron emission mammography (PEM). The purpose of this article was to estimate and compare the risks of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and MBI in a screening environment. Methods: The authors used a common scheme for all estimates of cancer incidence and mortality based on the excess absolute risk model from the BEIR VII report. The lifetime attributable risk model was used to estimate the lifetime risk of radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence and mortality were based on a population of 100 000 females followed from birth to age 80 and adjusted for the fraction that survives to various ages between 0 and 80. Assuming annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer incidence and mortality attributed to digital mammography, screen-film mammography, MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality from natural background radiation was calculated as a useful reference. Assuming a 15{\%}-32{\%} reduction in mortality from screening, the benefit/risk ratio for the different imaging modalities was evaluated. Results: Using conventional doses of 925 MBq Tc-99m sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer incidence and mortality were found to be 15-30 times higher than digital mammography. The benefit/risk ratio for annual digital mammography was >50:1 for both the 40-80 and 50-80 screening groups, but dropped to 3:1 for the 40-49 age group. If the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the administered doses need to be in the range 75-150 MBq for Tc-99m sestamibi and 35 MBq-70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of mammography in these age groups. These dose ranges should be achievable with enhancements to current technology while maintaining a reasonable examination time. Conclusions: The results of the dose estimates in this study clearly indicate that if molecular imaging techniques are to be of value in screening for breast cancer, then the administered doses need to be substantially reduced to better match the effective doses of mammography.",
keywords = "BSGI, mammography, MBI, PEM, radiation risk",
author = "O'Connor, {Michael K.} and Hua Li and Deborah Rhodes and Hruska, {Carrie B} and Clancy, {Conor B.} and Vetter, {Richard J.}",
year = "2010",
month = "12",
doi = "10.1118/1.3512759",
language = "English (US)",
volume = "37",
pages = "6187--6198",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "12",

}

TY - JOUR

T1 - Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast

AU - O'Connor, Michael K.

AU - Li, Hua

AU - Rhodes, Deborah

AU - Hruska, Carrie B

AU - Clancy, Conor B.

AU - Vetter, Richard J.

PY - 2010/12

Y1 - 2010/12

N2 - Purpose: Recent studies have raised concerns about exposure to low-dose ionizing radiation from medical imaging procedures. Little has been published regarding the relative exposure and risks associated with breast imaging techniques such as breast specific gamma imaging (BSGI), molecular breast imaging (MBI), or positron emission mammography (PEM). The purpose of this article was to estimate and compare the risks of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and MBI in a screening environment. Methods: The authors used a common scheme for all estimates of cancer incidence and mortality based on the excess absolute risk model from the BEIR VII report. The lifetime attributable risk model was used to estimate the lifetime risk of radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence and mortality were based on a population of 100 000 females followed from birth to age 80 and adjusted for the fraction that survives to various ages between 0 and 80. Assuming annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer incidence and mortality attributed to digital mammography, screen-film mammography, MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality from natural background radiation was calculated as a useful reference. Assuming a 15%-32% reduction in mortality from screening, the benefit/risk ratio for the different imaging modalities was evaluated. Results: Using conventional doses of 925 MBq Tc-99m sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer incidence and mortality were found to be 15-30 times higher than digital mammography. The benefit/risk ratio for annual digital mammography was >50:1 for both the 40-80 and 50-80 screening groups, but dropped to 3:1 for the 40-49 age group. If the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the administered doses need to be in the range 75-150 MBq for Tc-99m sestamibi and 35 MBq-70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of mammography in these age groups. These dose ranges should be achievable with enhancements to current technology while maintaining a reasonable examination time. Conclusions: The results of the dose estimates in this study clearly indicate that if molecular imaging techniques are to be of value in screening for breast cancer, then the administered doses need to be substantially reduced to better match the effective doses of mammography.

AB - Purpose: Recent studies have raised concerns about exposure to low-dose ionizing radiation from medical imaging procedures. Little has been published regarding the relative exposure and risks associated with breast imaging techniques such as breast specific gamma imaging (BSGI), molecular breast imaging (MBI), or positron emission mammography (PEM). The purpose of this article was to estimate and compare the risks of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and MBI in a screening environment. Methods: The authors used a common scheme for all estimates of cancer incidence and mortality based on the excess absolute risk model from the BEIR VII report. The lifetime attributable risk model was used to estimate the lifetime risk of radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence and mortality were based on a population of 100 000 females followed from birth to age 80 and adjusted for the fraction that survives to various ages between 0 and 80. Assuming annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer incidence and mortality attributed to digital mammography, screen-film mammography, MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality from natural background radiation was calculated as a useful reference. Assuming a 15%-32% reduction in mortality from screening, the benefit/risk ratio for the different imaging modalities was evaluated. Results: Using conventional doses of 925 MBq Tc-99m sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer incidence and mortality were found to be 15-30 times higher than digital mammography. The benefit/risk ratio for annual digital mammography was >50:1 for both the 40-80 and 50-80 screening groups, but dropped to 3:1 for the 40-49 age group. If the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the administered doses need to be in the range 75-150 MBq for Tc-99m sestamibi and 35 MBq-70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of mammography in these age groups. These dose ranges should be achievable with enhancements to current technology while maintaining a reasonable examination time. Conclusions: The results of the dose estimates in this study clearly indicate that if molecular imaging techniques are to be of value in screening for breast cancer, then the administered doses need to be substantially reduced to better match the effective doses of mammography.

KW - BSGI

KW - mammography

KW - MBI

KW - PEM

KW - radiation risk

UR - http://www.scopus.com/inward/record.url?scp=78650151327&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650151327&partnerID=8YFLogxK

U2 - 10.1118/1.3512759

DO - 10.1118/1.3512759

M3 - Article

C2 - 21302775

AN - SCOPUS:78650151327

VL - 37

SP - 6187

EP - 6198

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 12

ER -