TY - JOUR
T1 - Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT
AU - Korfiatis, P.
AU - Skiadopoulos, S.
AU - Sakellaropoulos, P.
AU - Kalogeropoulou, C.
AU - Costaridou, Lena
PY - 2007/12/1
Y1 - 2007/12/1
N2 - The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border undersegmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983 ± 0.008, whereas for shape differentiation in terms of mean distance it is 0.770 ± 0.251 mm (root mean square distance is 0.520 ± 0.008 mm; maximum distance is 3.327 ± 1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.
AB - The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border undersegmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983 ± 0.008, whereas for shape differentiation in terms of mean distance it is 0.770 ± 0.251 mm (root mean square distance is 0.520 ± 0.008 mm; maximum distance is 3.327 ± 1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.
UR - http://www.scopus.com/inward/record.url?scp=38349000626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349000626&partnerID=8YFLogxK
U2 - 10.1259/bjr/20861881
DO - 10.1259/bjr/20861881
M3 - Article
C2 - 18065645
AN - SCOPUS:38349000626
SN - 0007-1285
VL - 80
SP - 996
EP - 1005
JO - British Journal of Radiology
JF - British Journal of Radiology
IS - 960
ER -