Cohesin is required for expression of the estrogen receptor-alpha (ESR1) gene

Tanja Prenzel, Frank Kramer, Upasana Bedi, Sankari Nagarajan, Tim Beissbarth, Steven A. Johnsen

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

Background: In conjunction with posttranslational chromatin modifications, proper arrangement of higher order chromatin structure appears to be important for controlling transcription in the nucleus. Recent genome-wide studies have shown that the Estrogen Receptor-alpha (ER), encoded by the ESR1 gene, nucleates tissue-specific long-range chromosomal interactions in collaboration with the cohesin complex. Furthermore, the Mediator complex not only regulates ER activity, but also interacts with the cohesin complex to facilitate long-range chromosomal interactions. However, whether the cohesin and Mediator complexes function together to contribute to estrogen-regulated gene transcription remains unknown. Results: In this study we show that depletion of the cohesin subunit SMC3 or the Mediator subunit MED12 significantly impairs the ER-regulated transcriptome. Surprisingly, SMC3 depletion appears to elicit this effect indirectly by rapidly decreasing ESR1 transcription and ER protein levels. Moreover, we provide evidence that both SMC3 and MED12 colocalize on the ESR1 gene and are mutually required for their own occupancy as well as for RNAPII occupancy across the ESR1 gene. Finally, we show that extended proteasome inhibition decreases the mRNA expression of cohesin subunits which accompanies a decrease in ESR1 mRNA and ER protein levels as well as estrogen-regulated transcription. Conclusions: These results identify the ESR1 gene as a cohesin/Mediator-dependent gene and indicate that this regulation may potentially be exploited for the treatment of estrogen-dependent breast cancer.

Original languageEnglish (US)
Article number13
JournalEpigenetics and Chromatin
Volume5
Issue number1
DOIs
StatePublished - Aug 27 2012

    Fingerprint

Keywords

  • Chromatin
  • Cohesin
  • Estrogen receptor
  • Mediator

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Cite this