TY - JOUR
T1 - Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement
T2 - Part 1: Clinical Trial Design Principles A Consensus Document from the Mitral Valve Academic Research Consortium
AU - Mitral Valve Academic Research Consortium (MVARC)
AU - Stone, Gregg W.
AU - Vahanian, Alec S.
AU - Adams, David H.
AU - Abraham, William T.
AU - Borer, Jeffrey S.
AU - Bax, Jeroen J.
AU - Schofer, Joachim
AU - Cutlip, Donald E.
AU - Krucoff, Mitchell W.
AU - Blackstone, Eugene H.
AU - Généreux, Philippe
AU - Mack, Michael J.
AU - Siegel, Robert J.
AU - Grayburn, Paul A.
AU - Enriquez-Sarano, Maurice
AU - Lancellotti, Patrizio
AU - Filippatos, Gerasimos
AU - Kappetein, Arie Pieter
N1 - Funding Information:
For complete information on the MVARC members and participants, please see the Online Appendix . The MVARC initiative was funded by unrestricted grant support from Abbott Vascular, Boston Scientific, Cardiac Dimensions, Cordis, Edwards Lifesciences, Guided Delivery Systems Inc., Mitralign, Medtronic, and Valtech. Dr. Stone has served as a consultant for AGA Medical, AstraZeneca, Atrium, Boston Scientific, Cardiovascular Systems, Inc., Eli Lilly/Daiichi Sankyo, InfraReDx, InspireMD, Miracor, Osprey, Reva, TherOx, Thoratec, Velomedix, and Volcano; and has equity in the Biostar and MedFocus family of funds, Caliber, Guided Delivery Systems, MiCardia, and Vascular Nanotransfer Technologies. Dr. Vahanian has received personal fees from Abbott Vascular, Edwards Lifesciences, and Valtech; has served as a consultant for Abbott Vascular and Valtech; and has received honoraria from Edwards Lifesciences. Dr. Adams has received royalties for intellectual property paid to his medical institution from Edwards Lifesciences and Medtronic. Dr. Abraham has served as a consultant for Abbott Vascular, Novartis, and St. Jude Medical/CardioMEMS; and was coprincipal investigator for the COAPT trial of MitraClip sponsored by Abbott Vascular. Dr. Borer has served as a consultant for Amgen, ARMGO, BioMarin, Boehringer Ingelheim, Celgene, Cleveland BioLabs, JenaValve, Salix, Sanofi, and Servier; and serves as a committee member for Cardiorentis, Celladon, the National Heart, Lung, and Blood Institute, Novartis, Pfizer, Somahlution, and Takeda USA. Dr. Cutlip has received research support from Medtronic, Boston Scientific, and Abbott Vascular. Dr. Krucoff has received grants and personal fees from and served as a consultant for Abbott Vascular, Boston Scientific, and Medtronic. Dr. Blackstone has received grants from Edwards Lifesciences. Dr. Généreux has received grants from Cardiac Dimensions, Inc.; and serves as a consultant/speaker for Abbott Vascular, Cardiovascular Systems, Inc., and Edwards Lifesciences. Dr. Mack has served as a coprincipal investigator of trials on transcatheter mitral valve replacement and MitraClip therapy. Dr. Grayburn has served as a consultant for Abbott Vascular, Bracco Diagnostics, and Tendyne Holdings; has received grants from Abbott Vascular, Edwards Lifesciences, Guided Delivery Systems, Medtronic, Tendyne Holdings, and Valtech Cardio; has received personal fees from Abbott Vascular, Bracco Diagnostics, and Tendyne Holdings; and has served as a consultant to Tendyne Holdings. Dr. Filippatos has received grants from Abbott Vascular; and serves as a committee member or principal investigator of trials sponsored by Bayer, Cardiorentis, European Union, Medtronic, and Novartis. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Saibal Kar, MD, served as Guest Editor for this paper.
Publisher Copyright:
© 2015 American College of Cardiology Foundation.
PY - 2015/7/21
Y1 - 2015/7/21
N2 - Mitral regurgitation (MR) is one of the most prevalent valve disorders and has numerous etiologies, including primary (organic) MR, due to underlying degenerative/structural mitral valve (MV) pathology, and secondary (functional) MR, which is principally caused by global or regional left ventricular remodeling and/or severe left atrial dilation. Diagnosis and optimal management of MR requires integration of valve disease and heart failure specialists, MV cardiac surgeons, interventional cardiologists with expertise in structural heart disease, and imaging experts. The introduction of transcatheter MV therapies has highlighted the need for a consensus approach to pragmatic clinical trial design and uniform endpoint definitions to evaluate outcomes in patients with MR. The Mitral Valve Academic Research Consortium is a collaboration between leading academic research organizations and physician-scientists specializing in MV disease from the United States and Europe. Three in-person meetings were held in Virginia and New York during which 44 heart failure, valve, and imaging experts, MV surgeons and interventional cardiologists, clinical trial specialists and statisticians, and representatives from the U.S. Food and Drug Administration considered all aspects of MV pathophysiology, prognosis, and therapies, culminating in a 2-part document describing consensus recommendations for clinical trial design (Part 1) and endpoint definitions (Part 2) to guide evaluation of transcatheter and surgical therapies for MR. The adoption of these recommendations will afford robustness and consistency in the comparative effectiveness evaluation of new devices and approaches to treat MR. These principles may be useful for regulatory assessment of new transcatheter MV devices, as well as for monitoring local and regional outcomes to guide quality improvement initiatives.
AB - Mitral regurgitation (MR) is one of the most prevalent valve disorders and has numerous etiologies, including primary (organic) MR, due to underlying degenerative/structural mitral valve (MV) pathology, and secondary (functional) MR, which is principally caused by global or regional left ventricular remodeling and/or severe left atrial dilation. Diagnosis and optimal management of MR requires integration of valve disease and heart failure specialists, MV cardiac surgeons, interventional cardiologists with expertise in structural heart disease, and imaging experts. The introduction of transcatheter MV therapies has highlighted the need for a consensus approach to pragmatic clinical trial design and uniform endpoint definitions to evaluate outcomes in patients with MR. The Mitral Valve Academic Research Consortium is a collaboration between leading academic research organizations and physician-scientists specializing in MV disease from the United States and Europe. Three in-person meetings were held in Virginia and New York during which 44 heart failure, valve, and imaging experts, MV surgeons and interventional cardiologists, clinical trial specialists and statisticians, and representatives from the U.S. Food and Drug Administration considered all aspects of MV pathophysiology, prognosis, and therapies, culminating in a 2-part document describing consensus recommendations for clinical trial design (Part 1) and endpoint definitions (Part 2) to guide evaluation of transcatheter and surgical therapies for MR. The adoption of these recommendations will afford robustness and consistency in the comparative effectiveness evaluation of new devices and approaches to treat MR. These principles may be useful for regulatory assessment of new transcatheter MV devices, as well as for monitoring local and regional outcomes to guide quality improvement initiatives.
KW - heart failure
KW - mitral regurgitation
KW - mitral valve
KW - valve intervention
KW - valve surgery (or cardiac surgery)
UR - http://www.scopus.com/inward/record.url?scp=84937410219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937410219&partnerID=8YFLogxK
U2 - 10.1016/j.jacc.2015.05.046
DO - 10.1016/j.jacc.2015.05.046
M3 - Review article
C2 - 26184622
AN - SCOPUS:84937410219
SN - 0735-1097
VL - 66
SP - 278
EP - 307
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 3
ER -